异质结的类型(全方位解析异质结技术)
异质结的类型(全方位解析异质结技术)资料来源:迈为股份,招商证券 图5. HIT电池非晶硅薄膜PECVD工艺图 2. 制备非晶硅薄膜硅片在PECVD设备中制作钝化膜和PN结。HIT电池高效率的根源在于本征非晶硅薄膜优良的钝化效果。由于晶硅衬底表面存在大量的悬挂键,光照激发的少数载流子到达表面后容易被悬挂键俘获而复合,从而降低电池效率。此外,通过在硅片正面和背面沉积富氢的本征非晶硅薄膜,可以有效地将悬挂键氢化并降低表面缺陷,从而显著提高少子寿命,增加开路电压,最终提高电池效率。虽然每一层膜的厚度只有4-10nm,每1-2nm实现的功能和制备工艺却大不相同,因此本征和掺杂非晶硅薄膜需要在多个腔体中完成,PECVD中需要导入多腔室沉积系统。
图4. 三种量产电池工艺流程对比
资料来源:梅耶伯格,招商证券
1. 清洗制绒
与常规P型或者N型电池制造工艺类似,HIT电池也是以清洗制绒为电池制造的第一步,这一步骤的主要目的是清除N型衬底表面的油污和金属杂质,去除机械损伤层,形成金字塔绒面,陷光并减少表面反射。
2. 制备非晶硅薄膜
硅片在PECVD设备中制作钝化膜和PN结。HIT电池高效率的根源在于本征非晶硅薄膜优良的钝化效果。由于晶硅衬底表面存在大量的悬挂键,光照激发的少数载流子到达表面后容易被悬挂键俘获而复合,从而降低电池效率。此外,通过在硅片正面和背面沉积富氢的本征非晶硅薄膜,可以有效地将悬挂键氢化并降低表面缺陷,从而显著提高少子寿命,增加开路电压,最终提高电池效率。
虽然每一层膜的厚度只有4-10nm,每1-2nm实现的功能和制备工艺却大不相同,因此本征和掺杂非晶硅薄膜需要在多个腔体中完成,PECVD中需要导入多腔室沉积系统。
图5. HIT电池非晶硅薄膜PECVD工艺图
资料来源:迈为股份,招商证券
3. 沉积金属氧化物导电层(TCO)
图6. 镀膜技术分类
资料来源:新型TCO材料在光伏行业的应用前景
硅片沉积完非晶硅薄膜之后就进入SPUTTER(磁控溅射)或者RPD(离子反应镀膜)设备,沉积透明金属氧化物导电膜TCO。TCO纵向收集载流子并向电极传输。由于非晶硅层晶体呈无序结构,电子与空穴迁徙率较低,且横向导电性较差,不利于光生载流子的收集。因此需要在正面掺杂层上方沉积一层75-80nm厚的TCO,用于纵向收集载流子并向电极传输,TCO同时可以减少光学反射。
图7. SPUTTER磁控溅射原理图
资料来源:新型TCO材料在光伏行业的应用前景
图8. RPD离子反应镀膜原理图
资料来源:新型TCO材料在光伏行业的应用前景
TCO膜在可见光范围内(波长380-760nm)具有80%以上的穿透率,且电阻很低,其成分主要为In、Sb、Zn、Sn、Cd及其氧化物的复合体。目前应用最广泛的是ITO,SCOT,IWO,AZO。TCO制备存在SPUTTER(磁控溅射)或者RPD(离子反应镀膜)两种工艺,目前由于成本考虑大多选择SPUTTER(磁控溅射)工艺。
图9. 磁控溅射工艺与RPD离子反应镀膜工艺对比
资料来源:CNKI
4. 丝印固化
HIT电池生产的最后一步是丝印固化,制备金属电极并固化。考虑到HIT是低温工艺,不区分正银和背银,因此丝网印刷加低温固化的工艺相对比较简单,但是这一特性的缺点之一就是价格较高且消耗量较大,因此目前业内也有部分企业尝试使用镀铜工艺来制作电极。因为在镀铜工艺中不会使用到银浆,成本较为低廉。但即便如此该工艺也并未被广泛应用,因为工艺非常复杂,且废液排放存在严重的环保制约,使其推广受到了限制。
HIT电池的优势
1. 转换效率高
HIT电池高转换效率源于高开路电压,HIT电池的开路电压Voc可以接近750mV,而普通PERC电池则普遍低于700mV。
HIT电池的高开路电压来源于两点:
-
氢化本征非晶硅薄膜优良的钝化效果
-
光生载流子可以贯穿氢化非晶硅薄膜,因此不需要激光开膜和形成欧姆接触,可以有效减少复合
由于多主栅技术和光致再生技术的导入,目前HIT的研发效率普遍已经超过24%。