快捷搜索:  汽车  科技

编程中的基本数据结构(一文看懂编程中的基本数据结构与算法思想)

编程中的基本数据结构(一文看懂编程中的基本数据结构与算法思想){int binarySearchLoop(int arr[] int len int findData)如用分治法来计算2^10?2^10=2^5*x^5=2^2*x^3*x^5=32*32=1024相对于顺序查找,二分查找有更高的效率,前提是二分查找需要事先排好序:

编程的关键在于选择数据结构和算法,数据结构用于描述问题,算法用于描述解决问题的方法和步骤。

描述问题的数据除了各数据元素本身,还要考虑各元素的逻辑关系,主要是一对一的线性关系,一对多的树型关系和多对多的图形关系。另外,内存中对各数据元素的存储只有顺序存储和链式存储两种方式,所以数据结构还要考虑数据的存储结构,并考虑逻辑结构与数据结构如何有效地结合到一起。

用算法描述问题,当问题比较复杂时,通常的思路是分而治之,并辅以适当的数据结构。

1 分治法Divide and Conquer

分治法通常描述为以下三步:

Divide the problem into more subproblems(分解问题为众多的子问题);Conuqe(solve) the subproblems(解决各子问题);Combine(merge) the solution of subproblems(if need)(合并各子问题的解(如果需要)).

如用分治法来计算2^10?

2^10=2^5*x^5=2^2*x^3*x^5=32*32=1024

相对于顺序查找,二分查找有更高的效率,前提是二分查找需要事先排好序:

int binarySearchLoop(int arr[] int len int findData)

{

if(arr==NULL || len <=0)

return -1;

int start = 0;

int end = len-1;

while(start<=end)

{

int mid = start (end-start)/2;

if(arr[mid] == findData)

return mid;

else if(findData < arr[mid])

end = mid-1;

else

start = mid 1;

}

return -1;

}

2 枚举法也是一种暴力缩小问题规模的算法

简单的枚举算法也是可以优化的,即尽可能缩小搜索的空间,如判断质数:

质数(prime number)又称素数,有无限个。质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数。

判断质数的函数:

int isPrime(int n)

{

if(n<= 1)// 小于等于1的整数不可能是素数

return 0;

if(n == 2); // 2 是素数

return 1;

if(n%2 == 0); // 能被2整除的其他整数都不是素数

return 0;

int limit = (int)sqrt((double)n) 1;

for(int i = 3; i <= limit; i=i 2)

{

if(n % i == 0)

return 0;

}

return 1;

}

isPrime()没有必要枚举所有的因子。

I 只要发现任何一个大于1小于n的因子,就能停下来报告n不是素数。

II 如果n能被2整除,直接报告n不是素数。如果n不能被2整除,那么它也不可能被4或6或其他偶数整除。因此,isPrime只需要检查2和奇数(由3开始,步长为2)。但注意有个特例,2能被2整除,但2是素数。

III 如果n不是素数,则必有一个因子小于√n 。因此不需要检查到n为止。只需检查到n(n=n*n) 。

因为如果n能被2~n-1之间任一整数整除,其二个因子必定有一个小于或等于√n,另一个大于或等于√n。例如24可以表示为:2*12、3*8、4*6,前面的因子小于√24,后面的因子大于√24,检验出了小因子,即可判断n是否为素数,就像逻辑运算的短路求值。

3 程序的模块化

分治法在程序思想中的应用就是实现程序的模块化,包括面向过程的函数化和面向对象的对象化。

许多原因都促使我们将应用程序分解成函数,下面仅列举其中三个:

函数一般小而具体。用一系列函数来写程序,胜于一气呵成写完整个程序。这称为“分而治之”,使你的精力一次集中在一个函数上。

包含许多小函数的应用程序比单一的长程序更容易阅读和调试。

函数可以重用。函数写好后可在程序的其他任何地方调用。这减少了编码量,提高了开发效率。

4 函数调用与栈

首先讨论一个从a点出发去f点,然后回到a点的问题(中间的b、c、d、e都有多个分岔口):

a→b2→c1→d3→e2→f,每个分岔口都有一个信封,告诉你应该走哪一个分支,为了能够正确地回到起点a,正确的做法是拿到一个信封后,即将这个信封叠在上一次拿到的信封的上面,回去时,依次从上面拿取信封,按提示即可正确返回。

其做法就是依次放入,依次取出,信封之间是顺序关系,只在一端操作,也就是不管是放入还是取出都不在中间操作。这样一种思路在计算机上用数据来描述就是后进先出的栈,函数的调用、返回,递归、回溯算法都需要使用栈这种数据结构(由程序员或递归时由编译器来实现)。

在C 中,函数不能嵌套定义,但可以嵌套调用,在函数调用时,编译器需要确保在逐级调用后能够回归到最初的调用点,编译器会隐式实现一个堆栈,用来保存每一级函数调用时的函数返回地址和局部变量,依次入栈和出栈。

C 也支持递归函数的递归调用,同样是由编译器隐式地实现了一个堆栈。

5 深度搜索与广度搜索

如果将上述的问题稍微扩展一点,要从源点到目标点,中间的节点可能有多个分叉,这样的问题可以用一个树或图来描述。

编程中的基本数据结构(一文看懂编程中的基本数据结构与算法思想)(1)

而探路的方法可以分为两种,一种是深度优先搜索(下一点、下一点……回溯……),一种是广度优先搜索(下一点的全部分叉、下一点的全部分叉……):

5.1 深度优先搜索用栈(stack)来实现,整个过程可以想象成一个倒立的树形:

1)把根节点压入栈中。2)每次从栈中弹出一个元素,搜索所有在它下一级的元素,把这些元素压入栈中。并把这个元素记为它下一级元素的前驱。3)找到所要找的元素时结束程序。4)如果遍历整个树还没有找到,结束程序。

编程中的基本数据结构(一文看懂编程中的基本数据结构与算法思想)(2)

5.2 广度优先搜索使用队列(queue)来实现,整个过程也可以看做一个倒立的树形:

1)把根节点放到队列的末尾。2)每次从队列的头部取出一个元素,查看这个元素所有的下一级元素,把它们放到队列的末尾。并把这个元素记为它下一级元素的前驱。(取出的元素也可以保存到一个队列)3)找到所要找的元素时结束程序。4)如果遍历整个树还没有找到,结束程序。

编程中的基本数据结构(一文看懂编程中的基本数据结构与算法思想)(3)

广度优先搜索相对于深度优先搜索,因为是逐层探索的,可以确保以较少的点到达目标点,缺点是存储量较大。

6 递归算法

递归就是某个函数直接或间接的调用自身。

语法形式上: 在一个函数的运行过程中 调用这个函数自己:

直接调用: 在fun()中直接执行fun();间接调用: 在fun1()中执行fun2(); 在fun2()中又执行fun1() ;

问题的求解过程是划分成许多相同性质的子问题的求解,而小问题的求解过程可以很容易的求出。这些子问题的解就构成里原问题的解。

待求解问题的解可以描述为输入变量x的函数f(x)。

通过寻找函数g( ),使得f(x) = g(f(x-1))。

且已知f(0)的值 就可以通过f(0)和g( )求出f(x)的值。

扩展到多个输入变量x y z等 x-1也可以推广到 x - x1 只要递归朝着 “出口” 的方向即可。

递归算法分解出的子问题与原问题之间是纵向的 同类的关系(枚举分解出的子问题之间是横向的 同类的关系)。

递归的三个要点:

递归式:如何将原问题划分成子问题;递归出口:递归终止的条件 即最小子问题的求解 可以允许多个出口;界函数:问题规模变化的函数 它保证递归的规模向出口条件靠拢。

如一个求阶乘的递归程序,给定n 求阶乘n!

编程中的基本数据结构(一文看懂编程中的基本数据结构与算法思想)(4)

阶乘的栈:

编程中的基本数据结构(一文看懂编程中的基本数据结构与算法思想)(5)

二分搜索的递归实现:


int binarySearchRecursion(int arr[] int findData int start int end)

{

if(arr==NULL || start>end)

return -1;

int mid = start (end-start)/2;

if(arr[mid] == findData)

return mid;

else if(findData < arr[mid])

binarySearchRecursion(arr findData start mid-1);

else

binarySearchRecursion(arr findData mid 1 end);

7 归并排序

归并排序(merge sort)是建立在归并操作上的一种有效的排序算法。该算法是分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并(2-way or binary merges sort)。

归并排序在1945年由冯·诺伊曼首次提出。

2-路归并的基本思路就是将数组分成二组A,B,如果这二组组内的数据都是有序的,那么就可以很方便的将这二组数据进行排序。如何让这二组组内数据有序?

可以将A,B组各自再分成二组。依次类推,当分出来的小组只有一个数据时,可以认为这个小组组内已经达到了有序,然后再合并相邻的二个小组就可以了。这样通过先递归的分解数列,再合并数列就完成了归并排序。

归并排序的效率是比较高的,设数列长为N,将数列分开成小数列一共要logN步,每步都是一个合并有序数列的过程,时间复杂度可以记为O(N),故一共为O(N*logN)。因为归并排序每次都是在相邻的数据中进行操作,所以归并排序在O(N*logN)的几种排序方法(快速排序,归并排序,希尔排序,堆排序)也是效率比较高的。

归并排序的实现分为递归实现非递归(迭代)实现。递归实现的归并排序是算法设计中分治策略的典型应用,我们将一个大问题分割成小问题分别解决,然后用所有小问题的答案来解决整个大问题。非递归(迭代)实现的归并排序首先进行是两两归并,然后四四归并,然后是八八归并,一直下去直到归并了整个数组。

7.1 归并排序分解

编程中的基本数据结构(一文看懂编程中的基本数据结构与算法思想)(6)

可以看到这种结构很像一棵完全二叉树,阶段可以理解为就是递归拆分子序列的过程,递归深度为log2n。

7.2 归并排序合并相邻有序子序列

再来看看阶段,我们需要将两个已经有序的子序列合并成一个有序序列,比如上图中的最后一次合并,要将[4 5 7 8]和[1 2 3 6]两个已经有序的子序列,合并为最终序列[1 2 3 4 5 6 7 8],来看下实现步骤。

  • 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
  • 设定两个指针,最初位置分别为两个已经排序序列的起始位置;
  • 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;temp[index ] = A[i] <= A[j] ? A[i ] : A[j ];
  • 重复步骤3直到某一指针到达序列尾;
  • 将另一序列剩下的所有元素直接复制到合并序列尾;

编程中的基本数据结构(一文看懂编程中的基本数据结构与算法思想)(7)

编程中的基本数据结构(一文看懂编程中的基本数据结构与算法思想)(8)

7.3 归并排序动图演示

编程中的基本数据结构(一文看懂编程中的基本数据结构与算法思想)(9)

编程中的基本数据结构(一文看懂编程中的基本数据结构与算法思想)(10)

7.4 归并排序代码

编程中的基本数据结构(一文看懂编程中的基本数据结构与算法思想)(11)

8 回溯法和分书问题

回溯算法实际上是一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯“返回,尝试别的路径。可以参考一下走迷宫的过程,一开始会随机选择一条道路前进,一直到走不通之后就会回头直到找到另外一条没有试过的道路前进。实际上,走迷宫的算法就是回溯法的经典问题。

回溯法实际上也是一种试错的思路,通过不断尝试解的组合来达到求解可行解和最优解的目的。虽然都有穷搜的概念蕴含其中,但是回溯法和穷举查找法是不同的。对于一个问题的所有实例,穷举法注定都是非常缓慢的,但应用回溯法至少可以期望对于一些规模不是很小的实例,计算机在可接受的时间内对问题求解。

许多复杂的规模的问题都可以使用回溯法,有”通用解题方法”的美称。分书问题和八皇后都是典型的回溯法问题。

分书问题能够较有代表性地表现数据描述、递归、回溯的算法思路。

有编号为0,1,2,3,4的5本书,准备分给5个人A,B,C,D,E,写一个程序,输出所有皆大欢喜的分书方案。

每个人的阅读兴趣用一个二维数组like描述:

Like[i][j] = true i喜欢书j

Like[i][j] = false i不喜欢书j

编程中的基本数据结构(一文看懂编程中的基本数据结构与算法思想)(12)

设计一个函数trynext(int i)给第i个人分书。

用一个一维数组take表示某本书分给了某人。take[j]=i 1;//把第j本书分配给第i个人

依次尝试把书j分给人i。

如果第i个人不喜欢第j本书,则尝试下一本书,如果喜欢,并且第j本书尚未分配,则把书j分配给i。

如果i是最后一个人,则方案数加1,输出该方案。否则调用trynext(i 1)为第i 1个人分书。

如果对第i个人枚举了他喜欢的所有的书,都没有找到可行的方案,那就回到前一个状态i-1,让i-1把分到的书退回去,重新找喜欢的书,再递归调用函数,寻找可行的方案。


#include <iostream> #include <conio.h> using namespace std; int like[5][5]={ {0 0 1 1 0} {1 1 0 0 1} {0 1 1 0 1} {0 0 0 1 0} {0 1 0 0 1}}; int take[5]={0 0 0 0 0};//记录每一本书的分配情况 int n;//n表示分书方案数 void trynext(int i); int main() { n=0; trynext(0); getch(); return 0; } //对第 i 个人进行分配 void trynext(int i) { int j k; for(j=0;j<5;j ) { if(like[i][j]&&take[j]==0) { take[j]=i 1;//把第j本书分配给第i个人 if(i==4)//第5个人分配结束,也即所有的书已经分配完毕,可以将方案进行输出 { n ; cout<<"第"<<n<<"种分配方案"<<endl; for(k=0;k<5;k ) cout<<"第"<<k<<"本书分配给"<<(char)(take[k] 'A'-1)<<endl; cout<<endl; } else trynext(i 1);//递归,对下一个人进行分配 take[j]=0;//回溯,寻找下一种方案 } } }

当like矩阵的值为

编程中的基本数据结构(一文看懂编程中的基本数据结构与算法思想)(13)

附归并排序的代码:


#include <stdio.h> #include <stdlib.h> #include <limits.h> // 分类 -------------- 内部比较排序 // 数据结构 ---------- 数组 // 最差时间复杂度 ---- O(nlogn) // 最优时间复杂度 ---- O(nlogn) // 平均时间复杂度 ---- O(nlogn) // 所需辅助空间 ------ O(n) // 稳定性 ------------ 稳定 // 合并两个已排好序的数组A[left...mid]和A[mid 1...right] void Merge(int A[] int left int mid int right) { int len = right - left 1; int *temp = new int[len]; // 辅助空间O(n) int index = 0; int i = left; // 前一数组的起始元素 int j = mid 1; // 后一数组的起始元素 while (i <= mid && j <= right) { temp[index ] = A[i] <= A[j] ? A[i ] : A[j ]; // 带等号保证归并排序的稳定性 } while (i <= mid) { temp[index ] = A[i ]; } while (j <= right) { temp[index ] = A[j ]; } for (int k = 0; k < len; k ) { A[left ] = temp[k]; } } // 递归实现的归并排序(自顶向下) void MergeSortRecursion(int A[] int left int right) { if (left == right) // 当待排序的序列长度为1时,递归开始回溯,进行merge操作 return; int mid = (left right) / 2; MergeSortRecursion(A left mid); //左半部分排好序 MergeSortRecursion(A mid 1 right); //右半部分排好序 Merge(A left mid right); //合并左右部分 } // 非递归(迭代)实现的归并排序(自底向上) void MergeSortIteration(int A[] int len) { int left mid right;// 子数组索引 前一个为A[left...mid],后一个子数组为A[mid 1...right] for (int i = 1; i < len; i *= 2) // 子数组的大小i初始为1,每轮翻倍 { left = 0; while (left i < len) // 后一个子数组存在(需要归并) { mid = left i - 1; right = mid i < len ? mid i : len - 1;// 后一个子数组大小可能不够 Merge(A left mid right); left = right 1; // 前一个子数组索引向后移动 } } } int main() { int A1[] = { 6 5 3 1 8 7 2 4 }; // 从小到大归并排序 int A2[] = { 6 5 3 1 8 7 2 4 }; int n1 = sizeof(A1) / sizeof(int); int n2 = sizeof(A2) / sizeof(int); MergeSortRecursion(A1 0 n1 - 1); // 递归实现 MergeSortIteration(A2 n2); // 非递归实现 printf("递归实现的归并排序结果:"); for (int i = 0; i < n1; i ) { printf("%d " A1[i]); } printf(" "); printf("非递归实现的归并排序结果:"); for (i = 0; i < n2; i ) { printf("%d " A2[i]); } printf(" "); system("pause"); return 0; }

猜您喜欢: