快捷搜索:  汽车  科技

分库分表如何保证数据同步和唯一(数据库分库分表)

分库分表如何保证数据同步和唯一(数据库分库分表)水平切分分为库内分表和分库分表,是根据表内数据内在的逻辑关系,将同一个表按不同的条件分散到多个数据库或多个表中,每个表中只包含一部分数据,从而使得单个表的数据量变小,达到分布式的效果。如图所示: 当一个应用难以再细粒度的垂直切分,或切分后数据量行数巨大,存在单库读写、存储性能瓶颈,这时候就需要进行水平切分了。垂直分表是基于数据库中的"列"进行,某个表字段较多,可以新建一张扩展表,将不经常用或字段长度较大的字段拆分出去到扩展表中。在字段很多的情况下(例 如一个大表有100多个字段),通过"大表拆小表",更便于开发与维护,也能避免跨页问题,MySQL底层是通过数据页存储的,一条记录占用空间过大会导 致跨页,造成额外的性能开销。另外数据库以行为单位将数据加载到内存中,这样表中字段长度较短且访问频率较高,内存能加载更多的数据,命中率更高,减少了 磁盘IO,从而提升了数据库性能。垂直切分的优点:缺点

一. 数据切分

关系型数据库本身比较容易成为系统瓶颈,单机存储容量、连接数、处理能力都有限。当单表的数据量达到1000W或100G以后,由于查询维 度较多,即使添加从库、优化索引,做很多操作时性能仍下降严重。此时就要考虑对其进行切分了,切分的目的就在于减少数据库的负担,缩短查询时间。

数据库分布式核心内容无非就是数据切分(Sharding),以及切分后对数据的定位、整合。数据切分就是将数据分散存储到多个数据库中,使得单一数据库中的数据量变小,通过扩充主机的数量缓解单一数据库的性能问题,从而达到提升数据库操作性能的目的。数据切分根据其切分类型,可以分为两种方式:垂直(纵向)切分和水平(横向)切分

什么是垂直(纵向)切分?

垂直切分常见有垂直分库和垂直分表两种。

垂直分库就是根据业务耦合性,将关联度低的不同表存储在不同的数据库。做法与大系统拆分为多个小系统类似,按业务分类进行独立划分。与"微服务治理"的做法相似,每个微服务使用单独的一个数据库。如图:

分库分表如何保证数据同步和唯一(数据库分库分表)(1)

垂直分表是基于数据库中的"列"进行,某个表字段较多,可以新建一张扩展表,将不经常用或字段长度较大的字段拆分出去到扩展表中。在字段很多的情况下(例 如一个大表有100多个字段),通过"大表拆小表",更便于开发与维护,也能避免跨页问题,MySQL底层是通过数据页存储的,一条记录占用空间过大会导 致跨页,造成额外的性能开销。另外数据库以行为单位将数据加载到内存中,这样表中字段长度较短且访问频率较高,内存能加载更多的数据,命中率更高,减少了 磁盘IO,从而提升了数据库性能。

垂直切分的优点:

  • 解决业务系统层面的耦合,业务清晰
  • 与微服务的治理类似,也能对不同业务的数据进行分级管理、维护、监控、扩展等
  • 高并发场景下,垂直切分一定程度的提升IO、数据库连接数、单机硬件资源的瓶颈

缺点:

  • 部分表无法join,只能通过接口聚合方式解决,提升了开发的复杂度
  • 分布式事务处理复杂
  • 依然存在单表数据量过大的问题(需要水平切分)
什么是水平(横向)切分?

当一个应用难以再细粒度的垂直切分,或切分后数据量行数巨大,存在单库读写、存储性能瓶颈,这时候就需要进行水平切分了。

水平切分分为库内分表和分库分表,是根据表内数据内在的逻辑关系,将同一个表按不同的条件分散到多个数据库或多个表中,每个表中只包含一部分数据,从而使得单个表的数据量变小,达到分布式的效果。如图所示:

分库分表如何保证数据同步和唯一(数据库分库分表)(2)

库内分表只解决了单一表数据量过大的问题,但没有将表分布到不同机器的库上,因此对于减轻MySQL数据库的压力来说,帮助不是很大,大家还是竞争同一个物理机的CPU、内存、网络IO,最好通过分库分表来解决。

水平切分的优点:

  • 不存在单库数据量过大、高并发的性能瓶颈,提升系统稳定性和负载能力
  • 应用端改造较小,不需要拆分业务模块

缺点:

  • 跨分片的事务一致性难以保证
  • 跨库的join关联查询性能较差
  • 数据多次扩展难度和维护量极大

水平切分后同一张表会出现在多个数据库/表中,每个库/表的内容不同。

什么时候考虑切分

1、能不切分尽量不要切分

并不是所有表都需要进行切分,主要还是看数据的增长速度。切分后会在某种程度上提升业务的复杂度,数据库除了承载数据的存储和查询外,协助业务更好的实现需求也是其重要工作之一。

不到万不得已不用轻易使用分库分表这个大招,避免"过度设计"和"过早优化"。分库分表之前,不要为分而分,先尽力去做力所能及的事情,例如:升级硬件、升级网络、读写分离、索引优化等等。当数据量达到单表的瓶颈时候,再考虑分库分表。

2、数据量过大,正常运维影响业务访问

这里说的运维,指:

1)对数据库备份,如果单表太大,备份时需要大量的磁盘IO和网络IO。例如1T的数据,网络传输占50MB时候,需要20000秒才能传输完毕,整个过程的风险都是比较高的

2)对一个很大的表进行DDL修改时,MySQL会锁住全表,这个时间会很长,这段时间业务不能访问此表,影响很大。如果使用pt- online-schema-change,使用过程中会创建触发器和影子表,也需要很长的时间。在此操作过程中,都算为风险时间。将数据表拆分,总量减 少,有助于降低这个风险。

3)大表会经常访问与更新,就更有可能出现锁等待。将数据切分,用空间换时间,变相降低访问压力

3、随着业务发展,需要对某些字段垂直拆分

4、数据量快速增长

随着业务的快速发展,单表中的数据量会持续增长,当性能接近瓶颈时,就需要考虑水平切分,做分库分表了。此时一定要选择合适的切分规则,提前预估好数据容量

5、安全性和可用性

鸡蛋不要放在一个篮子里。在业务层面上垂直切分,将不相关的业务的数据库分隔,因为每个业务的数据量、访问量都不同,不能因为一个业务把数 据库搞挂而牵连到其他业务。利用水平切分,当一个数据库出现问题时,不会影响到100%的用户,每个库只承担业务的一部分数据,这样整体的可用性就能提 高。

案例分析

1、用户中心业务场景

用户中心是一个非常常见的业务,主要提供用户注册、登录、查询/修改等功能,其核心表为:

分库分表如何保证数据同步和唯一(数据库分库分表)(3)

任何脱离业务的架构设计都是耍流氓,在进行分库分表前,需要对业务场景需求进行梳理:

  • 用户侧:前台访问,访问量较大,需要保证高可用和高一致性。主要有两类需求:
  • 用户登录:通过login_name/phone/email查询用户信息,1%请求属于这种类型
  • 用户信息查询:登录之后,通过uid来查询用户信息,99%请求属这种类型
  • 运营侧:后台访问,支持运营需求,按照年龄、性别、登陆时间、注册时间等进行分页的查询。是内部系统,访问量较低,对可用性、一致性的要求不高。

2、水平切分方法

当数据量越来越大时,需要对数据库进行水平切分,上文描述的切分方法有"根据数值范围"和"根据数值取模"。

"根据数值范围":以主键uid为划分依据,按uid的范围将数据水平切分到多个数据库上。例如:user-db1存储uid范围为0~1000w的数据,user-db2存储uid范围为1000w~2000wuid数据。

  • 优点是:扩容简单,如果容量不够,只要增加新db即可。
  • 不足是:请求量不均匀,一般新注册的用户活跃度会比较高,所以新的user-db2会比user-db1负载高,导致服务器利用率不平衡

"根据数值取模":也是以主键uid为划分依据,按uid取模的值将数据水平切分到多个数据库上。例如:user-db1存储uid取模得1的数据,user-db2存储uid取模得0的uid数据。

  • 优点是:数据量和请求量分布均均匀
  • 不足是:扩容麻烦,当容量不够时,新增加db,需要rehash。需要考虑对数据进行平滑的迁移。

3、非uid的查询方法

水平切分后,对于按uid查询的需求能很好的满足,可以直接路由到具体数据库。而按非uid的查询,例如login_name,就不知道具体该访问哪个库了,此时需要遍历所有库,性能会降低很多。

对于用户侧,可以采用"建立非uid属性到uid的映射关系"的方案;对于运营侧,可以采用"前台与后台分离"的方案。

3.1、建立非uid属性到uid的映射关系

1)映射关系

例如:login_name不能直接定位到数据库,可以建立login_name→uid的映射关系,用索引表或缓存来存储。当访问login_name时,先通过映射表查询出login_name对应的uid,再通过uid定位到具体的库。

映射表只有两列,可以承载很多数据,当数据量过大时,也可以对映射表再做水平切分。这类kv格式的索引结构,可以很好的使用cache来优化查询性能,而且映射关系不会频繁变更,缓存命中率会很高。

3.2、前台与后台分离

对于用户侧,主要需求是以单行查询为主,需要建立login_name/phone/email到uid的映射关系,可以解决这些字段的查询问题。

而对于运营侧,很多批量分页且条件多样的查询,这类查询计算量大,返回数据量大,对数据库的性能消耗较高。此时,如果和用户侧公用同一批服务或数据库,可能因为后台的少量请求,占用大量数据库资源,而导致用户侧访问性能降低或超时。

这类业务最好采用"前台与后台分离"的方案,运营侧后台业务抽取独立的service和db,解决和前台业务系统的耦合。由于运营侧对可用 性、一致性的要求不高,可以不访问实时库,而是通过binlog异步同步数据到运营库进行访问。在数据量很大的情况下,还可以使用ES搜索引擎或Hive 来满足后台复杂的查询方式。

常用的支持分库分表中间件:
  • sharding-jdbc(当当)
  • TSharding(蘑菇街)
  • Atlas(奇虎360)
  • Cobar(阿里巴巴)
  • MyCAT(基于Cobar)
  • Oceanus(58同城)
  • Vitess(谷歌)

喜欢的小伙伴,点个关注吧!

猜您喜欢: