七年级上册数学书相反数预习(初中七年级上册数学讲义)
七年级上册数学书相反数预习(初中七年级上册数学讲义)要点诠释:1.定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.4. 理解并会熟练运用绝对值的非负性进行解题.【要点梳理】要点一、绝对值
【学习目标】
1.掌握一个数的绝对值的求法和性质;
2.进一步学习使用数轴,借助数轴理解绝对值的几何意义;
3.会求一个数的绝对值,并会用绝对值比较两个负有理数的大小;
4. 理解并会熟练运用绝对值的非负性进行解题.
【要点梳理】
要点一、绝对值
1.定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.
要点诠释:
(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a都有:
(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.
(3)一个有理数是由符号和绝对值两个方面来确定的.
2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0.
要点二、有理数的大小比较
1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a与b在数轴上的位置如图所示,则a<b.
2.法则比较法:
两个数比较大小,按数的性质符号分类,情况如下:
两数同号
1.同为正号:绝对值大的数大
2.同为负号:绝对值大的反而小
两数异号:正数大于负数
正负数与0
1.正数与0:正数大于0
2.负数与0:负数小于0
要点诠释:
利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;(3)判定两数的大小.
3. 作差法:设a、b为任意数,若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,a<b;反之成立.
4. 倒数比较法:如果两个数都大于0,那么倒数大的反而小.