快捷搜索:  汽车  科技

考研数学二线性代数知识点归纳(线性代数重点分析)

考研数学二线性代数知识点归纳(线性代数重点分析)第五章 特征值与特征向量向量组的线性相关性证明、线性表出等问题,解决此类问题的关键在于深刻理解向量组的线性相关性概念,掌握线性相关性的几个相关定理,另外还要注意推证过程中逻辑的正确性,还要善于使用反证法。向量组的极大无关组、等价向量组、向量组及矩阵秩的概念,以及它们之间的相互关系。要求会用矩阵的初等变换求向量组的极大线性无关组以及向量组或者矩阵的秩。第二章 矩阵首先是矩阵定义,它是一个数表。这个与行列式有明显的区别。然后看运算,常见的运算是求逆,转置,伴随,幂等运算。要注意它们的综合性。还有一个重点就是常见矩阵类型。大家特别要注意实对称矩阵,正交矩阵,正定矩阵以及秩为1的矩阵。最后就是矩阵秩。这是一个核心和重点。矩阵的秩是整个线性代数的核心。要清楚,秩的定义,有关秩的很多结论。针对结论,大家最好能知道他们是怎么来的,自己动手算一遍。要注意矩阵分块的原则,分块矩阵的初等变换与简单矩阵初等变换

5/12/2016

考研数学二线性代数知识点归纳(线性代数重点分析)(1)

考研数学包括:线性代数、高等数学、概率论与数理统计,高等数学占考研数学的大部分比例,而线性代数所占的分值比例是22%。线性代数知识点多、定理多、概念多、符号多、运算规律多,知识点之间的联系非常紧密。复习线性代数的时候,要对基本概念、基本定理、结论及其应用、各种运算规律及基本题型的计算方法都要掌握。下面针对各章节进行考点的总结,并给出复习重难点。

第一章 行列式

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算,其中具体行列式的计算方法主要有两种,第一种方法是三角化法,即利用行列式的性质把复杂的行列式化为上三角或者下三角来计算,第二种方法是降价法,即利用行列式按行(列)展开定理把高阶行列式降为低阶行列式来计算。

第二章 矩阵

首先是矩阵定义,它是一个数表。这个与行列式有明显的区别。然后看运算,常见的运算是求逆,转置,伴随,幂等运算。要注意它们的综合性。还有一个重点就是常见矩阵类型。大家特别要注意实对称矩阵,正交矩阵,正定矩阵以及秩为1的矩阵。最后就是矩阵秩。这是一个核心和重点。矩阵的秩是整个线性代数的核心。要清楚,秩的定义,有关秩的很多结论。针对结论,大家最好能知道他们是怎么来的,自己动手算一遍。要注意矩阵分块的原则,分块矩阵的初等变换与简单矩阵初等变换的区别和联系。

第三章 向量

向量组的线性相关性证明、线性表出等问题,解决此类问题的关键在于深刻理解向量组的线性相关性概念,掌握线性相关性的几个相关定理,另外还要注意推证过程中逻辑的正确性,还要善于使用反证法。向量组的极大无关组、等价向量组、向量组及矩阵秩的概念,以及它们之间的相互关系。要求会用矩阵的初等变换求向量组的极大线性无关组以及向量组或者矩阵的秩。

第五章 特征值与特征向量

掌握特征值与特征向量的概念与性质;数值型矩阵特征值与特征向量的计算方法;理解掌握矩阵乘法运算与特征向量的联系;抽象矩阵行列式的计算;特征值重数与无关特征向量的关系。

第六章 二次型

二次型这一章的重点实质还是实对称矩阵的正交相似对角化问题。要掌握二次型的矩阵表示,用矩阵的方法研究二次型的问题。化二次型为标准形:主要是利用正交变换法化二次型为标准型,这是考研数学线性代数的重点大题题型,考生一定要掌握其做题的基本步骤。化二次型为标准型的实质也是实对称矩阵的正交相似对角化问题。二次型的正定性问题:对具体的数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象矩阵的正定性判断可以通过利用标准形,规范形,特征值等得到证明,这时应熟悉二次型正定有关的充分条件和必要条件。

猜您喜欢: