数据化管理十大特点(构建数据化管理体系)
数据化管理十大特点(构建数据化管理体系)更加强调流程、分工和沟通、应用模板化,分析智能化,一个成熟的结果应该是信息部门管理数据,业务部门提交数据需求,信息或业务部制作模板,分析数据生成报告,领导查看数据做汇总和策略调整,管理层可实时查看企业运营状况,企业重大战略调整可以直接调用汇总报告。数据化管理站在技术上来讲,实现的流程可分为以下8个步骤:需求分析、数据收集、数据整理、数据分析、数据可视化、模板开发、分析报告、模板应用。有问题就有对策,为了提高效率可以收集常用的业务需求,做成固定的数据模板,直接导入excel数据,邮件发送。但是,由于邮件发送不稳定也不安全交流也不方便,数据导入常出错,于是就有了报表工具的开发使用,后期流程固化之后,分析人员增多时,又有了BI这一类可与数据分析挖掘技术结合的工具的应用。转观这一类现象,其实在企业经营的过程中比比皆是,诸如财务、销售、市场等业务自身就带有强烈的数据分析需求,领导也厌倦了查看一沓沓报
企业IT人员常常会受到来自业务的各种各样的需求,“能不能帮忙查一下这周的销售数据?”“能不能分析一下为什么这个数据下滑得那么厉害,是不是统计错误”“能不能……”
还会有来自领导BOSS的各种要求,“小王,周一要做本季度的营销情况分析,帮我把相关的销售,财务数据调出来做个报告” 。
…………
几次之后,大家便觉得这样的效率太低了:研发人员需要在繁忙的开发任务中抽时间来做数据查询、统计,而业务、领导则需要等很久才能拿到数据。重复的工作太多,一旦数据、需求都上涨,将承受更大的压力。
有问题就有对策,为了提高效率可以收集常用的业务需求,做成固定的数据模板,直接导入excel数据,邮件发送。但是,由于邮件发送不稳定也不安全交流也不方便,数据导入常出错,于是就有了报表工具的开发使用,后期流程固化之后,分析人员增多时,又有了BI这一类可与数据分析挖掘技术结合的工具的应用。
转观这一类现象,其实在企业经营的过程中比比皆是,诸如财务、销售、市场等业务自身就带有强烈的数据分析需求,领导也厌倦了查看一沓沓报表,更希望看到结论化的数据。如果说运用到个人或是某一个问题的叫数据分析,那么投入到企业的业务层面用于辅助管理产生效益的则可称为数据化管理。其实,数据化管理的苗头早已出现,与KPI结合投入量化管理就是一个很好的例子。
数据化管理流程
数据化管理站在技术上来讲,实现的流程可分为以下8个步骤:需求分析、数据收集、数据整理、数据分析、数据可视化、模板开发、分析报告、模板应用。
更加强调流程、分工和沟通、应用模板化,分析智能化,一个成熟的结果应该是信息部门管理数据,业务部门提交数据需求,信息或业务部制作模板,分析数据生成报告,领导查看数据做汇总和策略调整,管理层可实时查看企业运营状况,企业重大战略调整可以直接调用汇总报告。
数据化管理产品
这里所讲的数据化管理产品并不是市面上成型的各类数据产品。而是能将企业数据管理过程中的一些重复性操作封装模块化,形成某一个通用模板或功能。诸如银行、互联网、零售行业的用户画像,通过已有数据,性别、地域、年龄、消费频次、喜好等标签,结合机器算法提炼与业务产品吻合的标签,进行精确推送。
1、数据分析模板
模板数据分析人员设计模板,将自己的对业务和商业逻辑的理解植入到分析的模板中去,最后成为指标模块、业务模块、全局模块。这样的模板通用性强,可以是一个文件,可以是应用程序,也可以是OA、ERP系统的一个组成部分。企业可以选择开发成一套数据管理的系统,并往平台化的方向发展,或者作为一个数据管理分析模块,部署在已有的管理系统。
2、移动端&大屏可视化分析
模板应用成熟后,考虑更好的为管理层和领导层服务,可以结合目前当下的HTML5技术,APP应用去做更好的应用。
总结
数据化管理的层次:依照业务,业务指导层、营运分析层、经营策略层、战略规划层。
数据化管理的流程:需求分析、数据收集、数据整理、数据分析、数据可视化、模板开发、分析报告、模板应用。
数据化管理的成果:应用模板、数据管理平台,便捷的移动端/大屏应用
注:内容参考《数据化管理》,图标模板-FineReport