快捷搜索:  汽车  科技

工业自动化机器视觉系统设计(机器视觉如何应对与工业自动化系统集成应用的挑战)

工业自动化机器视觉系统设计(机器视觉如何应对与工业自动化系统集成应用的挑战)在半导体制造业,晶圆切割前必须根据其厚度(THK)、全厚度误差(TTV)、弯曲度(BOW)、翘曲度(WARP)等电气及物理参数进行细致分类,以达到严格的容差要求。为保证测量精度,传统采用单点测量方式,需消耗大量的测试时间。为此,美国Gigamat Technologies公司研发出新一代的全扫描自动分类设备(图2),以提高吞吐率并要求能达到单点测试下的精度和重复性要求,这在技术上是相当大的挑战。基于LabVIEW及同步的机器视觉、运动控制、数据采集的自动化半导体晶圆分类系统另一类应用是必须用到高性能、精密机器视觉组件的专业设备制造,典型代表是最早带动整个机器视觉行业崛起的半导体制造设备。从上游晶圆加工制造的分类切割,到末端电路板印刷、贴片,这类设备都依赖于高精度的视觉测量以对运动部件进行导引与定位。例如,如果锡膏印刷工序存在定位偏差,且该问题直到芯片贴装后的在线测试才被发现,那么返修的成本

机器视觉作为工业自动化系统的重要组成之一,其技术与应用也随着自动化行业的发展而日益成熟。具体体现在:图像处理能力和速度不断增强、光电器件性能的提高、各类标准的逐渐统一以及价格的相对降低。据AIA(自动成像协会)的市场研究调查报告,2006年全球机器视觉市场规模已经超过了70亿美元,并预测在今后五年内仍将保持持续的增长势头。然而,随着供应商和集成商不断的把机器视觉应用推向各个领域,机器视觉这一相对独立的功能如何无缝的融入各行业各类自动化装备遇到了前所未有的挑战。

机器视觉的应用及挑战

机器视觉应用主要可分为两类:

一类是用于大规模或者高测试要求的生产线上,如包装、印刷、分拣等,或者在野外、核电等不适合人员工作的环境中,利用机器视觉方式代替传统人工测量或检试,同时实现人工条件下无法达到的可靠性、精确度及自动化程度。

另一类应用是必须用到高性能、精密机器视觉组件的专业设备制造,典型代表是最早带动整个机器视觉行业崛起的半导体制造设备。从上游晶圆加工制造的分类切割,到末端电路板印刷、贴片,这类设备都依赖于高精度的视觉测量以对运动部件进行导引与定位。例如,如果锡膏印刷工序存在定位偏差,且该问题直到芯片贴装后的在线测试才被发现,那么返修的成本将会是原成本的100倍以上。

图.1 FIG.1 NI 紧凑型的机器视觉系统

下面我们通过两个实例分析,具体探讨如何利用开放灵活的软硬件平台集成机器视觉和多域功能应用,实现系统集成复杂度降低及开发周期的缩短。

基于LabVIEW及同步的机器视觉、运动控制、数据采集的自动化半导体晶圆分类系统

在半导体制造业,晶圆切割前必须根据其厚度(THK)、全厚度误差(TTV)、弯曲度(BOW)、翘曲度(WARP)等电气及物理参数进行细致分类,以达到严格的容差要求。为保证测量精度,传统采用单点测量方式,需消耗大量的测试时间。为此,美国Gigamat Technologies公司研发出新一代的全扫描自动分类设备(图2),以提高吞吐率并要求能达到单点测试下的精度和重复性要求,这在技术上是相当大的挑战。

工业自动化机器视觉系统设计(机器视觉如何应对与工业自动化系统集成应用的挑战)(1)

图.2自动化半导体晶圆分类系统

新全自动晶圆分类系统充分利用了LabVIEW平台及其配套工具包,该系统分为晶圆对准和测量两个工作步骤。对准过程使用线扫描图像采集方式和3轴运动控制,通过同步图像采集与底盘旋转速率,在1秒内完成整张晶片6百万象素的图像采集,利用LabVIEW视觉算法判断晶片中心位置、平坦度和其它特性,据此调整晶圆位置实现其与参数测量平台完全匹配。测量步骤要求对上下表面间距测量的分辨率小于0.0001mm,其解决办法是在LabVIEW平台下应用NI运动控制工具生成平滑的圆弧及螺旋轨迹组合,精确控制旋转中的晶片位置,使用NI数据采集卡完成多通道同步进行的探针高速、高密度测量,实时记录对应位置,据此进行相关计算处理,获取各项参数信息,最终得出分类的结果。

除了以上的核心步骤外,该系统还包括了:触摸屏人机界面;基于RS-485通信的晶圆升降机

控制;用于光源、机器功率和真空设备的数字I/O控制;以及与Microsoft Access数据库连接以实现加工过程数字化加工。而这些功能,都是在LabVIEW平台下统一开发完成,Gigmat的经理这样评论“如果没有LabVIEW以及NI机器视觉,运动控制和数据采集产品的同步,这个项目就不可能达到经济可行”。

NI紧凑型机器视觉系统帮助汽车火花塞检测达到6Sigma的重复性标准

汽车火花塞的偏心度和电极间距是决定其性能的关键指标。过去某领先的汽车火花塞制造商一直通过人工的方式对其进行测量,因为测量精度低,必须采用过于严格的产品的公差带限制,导致不必要的生产要求提高和产量减少。为了保证可靠的质量控制,更快的检测速度和产量的提高,该制造商决定建立基于机器视觉的全扫描尺寸定量系统。

系统由IEEE 1394相机、环形光源、坚固的NI CVS嵌入式机器视觉系统以及LabVIEW软件开发平台构成。采集的火花塞图像通过火线传入CVS,在其上运行实时的圆形边缘检测等特殊算法,而通过对欠采样的控制找到精度与处理时间的平衡点,测量精度达到0.01mm,完全满足6Sigma标准。随后,CVS通过其数字端口与生产线上的PLC和继电器等设备通信,完成不合格品的自动剔除工作,免去了人工干预。整个系统接入工厂以太网,可以进行远程的参数配置,校准以及产品信息的记录。由于测试精度的提高,放宽了公差范围,大幅提高了产量和效率。

结论

机器视觉应用正由起步时单纯的图像采集、处理分析、结果判断输出,发展成为自动化系统重要组件之一。但是,相对人工检测的方式机器视觉也存在着特殊性,一定程度上体现在其灵活性和应变能力的限制。处理的不合适的话,即使一个看似很小的新功能引入,都有可能导致系统的重新设计。面对机器视觉集成度与灵活性与难题时,理想的工业软件开发环境LabVIEW成为用户开发平台的非常好的选择。利用其中机器视觉模块包含的丰富分析与处理算法,用户可以根据其具体需求定制开发或者简单升级相应的视觉功能,更可以这种统一的图像化开发方式实现对运动控制,可编程自动化控制器,数据采集等设备与功能的开发,以及与三方的PLC,工业设备和数据库软件的无缝连接,从而完成涵盖机器视觉功能在内的自动化系统的开发与集成。得益于这种系统构架,制造商能够更方便的将机器视觉功能引入到其生产线,降低了其设备制造的技术难度,符合机器视觉向着自动化系统一体化发展的趋势。

深圳辰视智能科技有限公司是一家集机器视觉、工业智能化于一体的高新技术企业,是由一支中国科学院机器视觉技术研究的精英团队在深圳创立。

辰视智能拥有基于深度学习的三维视觉引导、机器人运动控制、视觉检测、三维建模等方面的核心技术,并研发了机器人三维视觉引导系统 、机器人二维视觉引导系统、三维检测系统、产品外观检测系统等可根据客户需求定制化的智能产品。以高效·低成本·模块化的方式为自动化集成商、自动化设备厂商、机器人厂家提供机器视觉的相关解决方案。

工业自动化机器视觉系统设计(机器视觉如何应对与工业自动化系统集成应用的挑战)(2)

工业自动化机器视觉系统设计(机器视觉如何应对与工业自动化系统集成应用的挑战)(3)

工业自动化机器视觉系统设计(机器视觉如何应对与工业自动化系统集成应用的挑战)(4)

工业自动化机器视觉系统设计(机器视觉如何应对与工业自动化系统集成应用的挑战)(5)

工业自动化机器视觉系统设计(机器视觉如何应对与工业自动化系统集成应用的挑战)(6)

猜您喜欢: