快捷搜索:  汽车  科技

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)图1 蜂群箱体在线监测系统原理图本研究采用模块化系统电路设计方式,使得系统设计更加简单、模块之间干扰更小、系统功耗更低,有利于整个系统的维护。系统主要包括核心处理模块、数据采集模块、数据发送模块以及数据库服务器等。系统原理框图如图1所示。1 系统总体设计蜂群箱体关键参数在线监测系统设计目标是采集蜂群中的各种参数,为后续分析蜂群状态做前期的数据积累。为了不影响蜂群正常的活动,通常将传感器放置在蜂箱内特定位置,不需要人工打开蜂箱查验而监测蜂箱及蜂群信息,即“非入侵的嵌入式方法”。使用嵌入式方法监控蜂群的优点主要包括:①不干扰蜂群正常生理活动;②功耗小,连续工作时间长;③可靠性高,体积小,易于操作;④成本低。1.1 系统设计思路

本文节选自《智慧农业(中英文)》2020年第2卷第2期,李淼研究员团队的《蜂群箱体关键参数在线监测系统与性能测试》,其引用格式如下,欢迎大家阅读、引用。

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)(1)

引文格式:杨选将 李华龙 李淼 胡泽林 廖建军 刘先旺 郭盼盼 岳旭东. 蜂群箱体关键参数在线监测系统与性能测试[J]. 智慧农业(中英文) 2020 2(2): 115-125.

YANG XuanJiang LI Hualong LI Miao HU Zelin LIAO Jianjun LIU Xianwang GUO Panpan YUE Xudong.

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)(2)

点击直达官网阅读(全文,免费)

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)(3)

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)(4)

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)(5)

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)(6)

蜂群箱体关键参数在线监测系统与性能测试

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)(7)

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)(8)

1 系统总体设计

蜂群箱体关键参数在线监测系统设计目标是采集蜂群中的各种参数,为后续分析蜂群状态做前期的数据积累。为了不影响蜂群正常的活动,通常将传感器放置在蜂箱内特定位置,不需要人工打开蜂箱查验而监测蜂箱及蜂群信息,即“非入侵的嵌入式方法”。使用嵌入式方法监控蜂群的优点主要包括:①不干扰蜂群正常生理活动;②功耗小,连续工作时间长;③可靠性高,体积小,易于操作;④成本低。

1.1 系统设计思路

本研究采用模块化系统电路设计方式,使得系统设计更加简单、模块之间干扰更小、系统功耗更低,有利于整个系统的维护。系统主要包括核心处理模块、数据采集模块、数据发送模块以及数据库服务器等。系统原理框图如图1所示。

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)(9)

图1 蜂群箱体在线监测系统原理图

Fig. 1 Schematic diagRAM of beehive on-line monitoring system

系统采用STM32F103VBT6单片机为控制芯片,功耗约700 mW,采用外接12 V直流电供电,外围设备为温湿度传感器、射频传感器和微麦克风等。通过数据发送模块上传温湿度数据到数据库,音频数据可以保存在本地SD存储卡(Secure Digital Memory Card)中,以便后续进一步分析蜂群状态。为了能够实时地了解蜂群的状态,系统增加了液晶显示器(Liquid Crystal Display,LCD)显示模块,方便蜂农在现场能一目了然地掌握蜂群的真实环境。本设计参考了廖建军等基于WSN的蜂群监测系统研制与性能测试功能,利用WSN技术在不干扰蜂群状态的前提下进行有效监测。利用本地数据库存储数据,实现采集数据的高效管理。

1.2 数据库设计

系统的服务器数据库基于SQL Server开发,采用戴尔(DELL)塔式服务器电脑主机T140 E-2224 4核心 3.4 GHz 32 G内存 4 T硬盘SAS|H330。除了音频数据量较大,采用本地存储外,其他参数数据都实时上传到服务器数据库端。这些数据都汇总到DTU(Data Transfer unit)节点,通过DTU无线传输节点,利用移动通信信号,将数据传输到数据库。网页端从数据库读取数据,通过网页端实时可视化采集的蜂群数据,并实现近期数据浏览和历史数据下载等功能,帮助用户实时掌握蜂箱中蜂群的各种参数。数据库部分内容如图2所示。

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)(10)

图2 数据库数据存储示意图

Fig. 2 Schematic diagram of database data storage

2 系统数据采集与传输控制

系统数据采集与传输控制是蜂群箱体关键参数在线监测系统的关键部分,通过多源传感器以及移动通信网络实现蜂箱内环境与蜂群活动智能监测,进而对目标蜂场的各蜂箱环境温湿度和蜂群声音强度参数进行实时采集与远程传输。系统数据采集与传输控制包括3个模块,即系统核心处理模块、数据采集模块和数据远程传输模块。

2.1 核心处理模块

目前通常采用51、AVR、DSP、STM32和FPGA等芯片进行嵌入式开发。这些芯片在功耗、速度、内存上参差不齐,各有所长。针对蜂群监测系统的实时性和低功耗的要求,本研究选择了STM32系列微控制单元(Microcontroller Unit,MCU)作为处理器。与其他的单片机相比,STM32系列主要有以下优点。

①先进的内核架构。STM32系列采用ARM(Advanced RISC Machines)最新的、最先进机构Cortex-M3内核架构,通过ICode,DCode,System总线与外设进行连接。

②具有3种低功耗模式。拥有复杂、精细控制的时钟树,实时性好。

③丰富合理的外设。具有端口复用的功能。

④有自己的固件库,可加速开发。

低功耗的STM32F103VBT6是32位微控制器,采用LQFP-100封装,工作电源电压为2~3.6 V,工作温度为-40~85℃,程序存储器为128 kB,RAM(Random Access Memory)数据大小为20 kB,最大时钟频率为72 MHz,支持接口包括CAN、I2C、SPI、USART和USB。由于系统外部器件需要5和3.3 V电源,因此系统采用5 V供电,支持USB适配器或充电宝供电。为方便室外使用,同时又设计了12 V转5 V电路,以支持12 V适配器供电方式。电源管理电路如图3所示。

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)(11)

图3 电源管理电路

Fig. 3 Power management circuit

系统主控制芯片采用STM32F103VBT6,具有高性能ARM®Cortex®-M332位RISC内核(精简指令集计算机),高速嵌入式存储器(闪存128 kB,SRAM 20 kB)。该微处理器工作频率最高可达72 MHz,芯片内双RC晶振频率为8 MHz和32 kHz支持芯片外8 MHz 的高速晶振和32 kHz的低速晶振,后者可用于CPU的实时时钟。芯片内SRAM为64 k,芯片闪存为512 k以及支持在线编程。STM32F103VBT6具有100个I/O口和3个16通道的12位模数转换器,2通道的12位DA转换器,12通道直接存储器存取DMA控制器,可满足蜂箱内环境温湿度与声音监测处理需求。

为了保证数据采集各核心单元有充足的供电,当进行温度转换或拷贝数据到电可擦编程只读存储器EEPROM时,必须给单总线一个强上拉,否则由寄生电源供电时温湿度转换会丢失返回值。所以使用漏极开路把I/O直接拉到电源上来提供足够电流。

2.2 数据采集模块

2.2.1 蜂箱内部温湿度采集单元

系统使用一体化的SHT20温湿度传感器。该传感器采用聚乙烯(PE)材料防水外壳,适用于户外和高湿度,可有效提高传感器的使用寿命。485数字通讯传感器接口为4线,电源输入5~12 V直流电压(无正负方向,正负极连接均工作正常)。温度测量范围为-40~120℃,温度误差为±0.1℃;湿度测量范围为0%~100%RH,湿度分辨率为0.1%RH。

SHT20温湿度传感器预备了一种信号指示电源的使用意图。如果总线被拉低,总线控制器就需要在温度转换时对单总线提供强上拉。

为能实时在线监控蜂箱内温湿度,更好地管理蜂群,采用LabVIEW来编写监测蜂箱内温湿度的上位机采集程序。蜂箱温湿度监控系统结构见图4所示。图中总线控制器发出一个Skip ROM指令,然后发出读电源指令,这条指令发出后,控制器发出读时序,寄生电源会将总线拉低,而外部电源会将总线保持为高位。如果总线被拉低,总线控制器就会知道需要在温度转换期间对单总线提供强上拉。

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)(12)

图4 蜂箱温湿度监控结构图

Fig. 4 Beehive temperature and humidity monitoring structure chart

SHT20温湿度传感器模块的通讯接口电路如图5所示。

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)(13)

图5 SHT20温湿度传感器接口电路

Fig. 5 Interface circuit of SHT20 temperature and humidity sensors

2.2.2 进出巢蜜蜂数量计数单元

进出巢蜜蜂数量计数单元采用两对E3F-20C1/20L激光对射传感器,检测距离为(20±5) m,响应时间为2.5 ms,工作频率为50~60 Hz,监测的物体必须是大于1 mm的不透明的物体。该传感器为NPN常开型,工作电压为6~36 V,可满足本研究记录爬行中的蜜蜂数量的需求。

激光对射传感器在接收端采用三线,在发射端采用两线,NPN常开,工作电压为6~36 V,接线图如图6所示。

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)(14)

图6 激光对射传感器接线图

Fig. 6 Wiring of the laser beam sensor

激光对射有如下特性:当处于正常状态时,发射端发射光束,接收端能够接收光束;当光束被物体遮挡后,接收端不能正常接收,此时,接收端就会触发一个信号,从而接收端口捕捉到这个触发信号。如图7所示。

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)(15)

图7 激光对射原理图

Fig. 7 The principle diagram of laser beam

蜜蜂进出巢计数任务利用两对激光传感器融合作用的原理实现,如图8所示。其中IN表示巢内,OUT表示巢外。该装置部署在蜂箱中的进出口出,蜂箱设有一个蜜蜂通道,靠触发传感器的先后次序来判断蜜蜂爬行的方向。当蜜蜂从OUT向IN运动时,首先触发对射1中断,再触发对射2中断,此时变量NumberIn加1(见图8(a))。同理,当蜜蜂从IN往向OUT运动时,首先触发对射2中断,再触发对射1中断,此时变量NumberOut加1(见图8(b))。由此完成蜜蜂进出巢的计数功能,并将数据发送给RS232串口。

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)(16)

图8 蜜蜂进出巢计数原理图

Fig. 8 Principle diagram of bees counting in and out of nest

2.2.3 蜂群声音采集单元

该单元采用全指向的HC-4052专业麦克风,频率响应范围为20 Hz~20 kHz,灵敏度范围为(-46±2) dB,信噪比大于63 dB,咪头尺寸为4.0 mm×1.5 mm,能够方便地放入蜂箱中任何位置,有利于采集蜂群的声音。

蜂群声音采集任务包括配置WAVE头格式和目标数据写入两部分。WAVE是常用的音频文件格式,一个WAVE文件是由RIFF WAVE Chunk、Format Chunk、Fact Chunk(可选)和Data Chunk等若干个Chunk组成的。通过配置*.wav文件头格式来设定采样音频文件的格式。本系统音频文件按照16 bits、脉码调制录音(Pulse Code Modulation,PCM)模式、单通道、8 kHz采样频率、MIC接入方式进行采样,头文件采用小端模式,采集数据按照大端模式。将麦克风采样的数据添加到头文件的后面,形成wav音频文件。每个音频文件的采集时间为42 s(100页,其中页为内存管理大小单位),采用串行外设接口(SPI)协议,将该wav文件保存到本地SD存储卡后进行远程无线传输。

2.3 数据远程传输单元

为实现远程监测并达到无人值守的目的,需要将现场采集的数据实时传送给蜂农,以便实时了解蜂群状态。数据无线传输有多种方式,包括ZigBee、蓝牙、移动通信网络和Wi-Fi等,在传输距离和传输速度上各有优缺点。其中移动通信具有实时性强、可对设备进行远程控制、建设成本少低、监控范围广、具有良好的可扩展性、系统的传输容量大、数据传送速率高和通信费用低等特点及优势。由于蜂箱放置在户外,为保证数据可靠地传输,本系统采用厦门才茂通信科技有限公司的CM3150P GPRS DTU数据传输模块,包括移动GPRS网络和RS232串口,工业级设计,可实现TCP/UDP透明数据传输,完成监测数据远程无线传输和实时传送。

通过ZigBee模块进行现场蜂箱内温湿度数据的近距离传输与汇聚,无线收发模块将接收到的温湿度数据通过串口传给微控制器,微控制器将接收到的数据编码后,采用GPRS DTU模块进行远程数据发送,采用微控制器控制采集节点数据接收与GPRS模块远程数据发送,经GPRS模块远距离发送至计算机子系统。现场采用人机交互模块实时显示节点环境信息和设置工作参数,通过LCD显示模块实时显示来自所有子节点的采集数据,并进行数据校验和组包发送。

音频采用PCM压缩编码格式,ARM DSP达芬奇架构的高性能处理器配合相应的音频编解码功能模块进行音频数据处理,实时音频数据传输基于实时传输协议(Real-time Transport Protocol,RTP)和RTCP (RTP Control Protocol,RTCP) 控制协议,确保网络传输的实时性和稳定性。蜂箱内采用戴尔 OptiPlex 7060微型工控机连接微型麦克风,将微型麦克风放置在蜂箱内部,工控机使用客户端Python脚本程序,从微型麦克风每秒采集一次声音数据,并生成音频文件,存储在本地SD存储卡中进行实时缓存,而后通过Python进行WebSocket网络编程,实现客户端与服务器间的全双工通讯,进而通过无线网络实时与服务器上位机软件和数据库保持连接,并将生成的存储SD卡中的wav音频文件通过4G无线网络发送至服务器数据库中,实现蜂箱内蜜蜂声音文件的远程传输与存储。

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)(17)

推荐阅读

蜂群多特征监测研究进展概述

基于粒子群与模拟退火协同优化的农田网络监测模型构建与数据传输路径优化方法

吴才聪等:北斗系统农业应用概况

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)(18)

欢迎光临选购

微信交流服务群

为方便农业科学领域读者、作者和审稿专家学术交流,促进智慧农业发展,为更好地服务广大读者、作者和审稿人,编辑部建立了微信交流服务群,有关专业领域内的问题讨论、投稿相关的问题均可在群里咨询。

入群方法:加小编微信331760296备注:姓名、单位、研究方向,小编拉您进群,机构营销广告人员勿扰。

信息发布

科研团队介绍及招聘信息、学术会议及相关活动的宣传推广

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)(19)

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)(20)

蜂群架构模型(蜂群箱体关键参数在线监测系统设计)(21)

猜您喜欢: