快捷搜索:  汽车  科技

kmp算法中怎么求next修正值(算法图文动画详解系列)

kmp算法中怎么求next修正值(算法图文动画详解系列)算法图文详解:KMP算法原理详解视频:理清楚了暴力匹配算法的流程及内在的逻辑,咱们可以写出暴力匹配的代码,如下:int ViolentMatch(char* s char* p) { int sLen = strlen(s); int pLen = strlen(p); int i = 0; int j = 0; while (i < sLen && j < pLen) { if (s[i] == p[j]) { //①如果当前字符匹配成功(即S[i] == P[j]),则i ,j i ; j ; } else { //②如果失配(即

【算法图文动画详解系列】KMP 字符串查找算法(Knuth-Morris-Pratt )问题描述:字串匹配搜索

假设现在我们面临这样一个问题:有一个文本串S,和一个模式串P,现在要查找P在S中的位置,怎么查找呢?

暴力匹配算法

如果用暴力匹配的思路,并假设现在文本串S匹配到 i 位置,模式串P匹配到 j 位置,则有:

1、如果当前字符匹配成功(即S[i] == P[j]),则i ,j ,继续匹配下一个字符;

2、如果失配(即S[i]! = P[j]),令i = i - (j - 1),j = 0。相当于每次匹配失败时,i 回溯,j 被置为0。

理清楚了暴力匹配算法的流程及内在的逻辑,咱们可以写出暴力匹配的代码,如下:

int ViolentMatch(char* s char* p) { int sLen = strlen(s); int pLen = strlen(p); int i = 0; int j = 0; while (i < sLen && j < pLen) { if (s[i] == p[j]) { //①如果当前字符匹配成功(即S[i] == P[j]),则i ,j i ; j ; } else { //②如果失配(即S[i]! = P[j]),令i = i - (j - 1),j = 0 i = i - j 1; j = 0; } } //匹配成功,返回模式串p在文本串s中的位置,否则返回-1 if (j == pLen) return i - j; else return -1; } KMP 算法

Knuth-Morris-Pratt 字符串查找算法,简称为 “KMP算法”,常用于在一个文本串S内查找一个模式串P 的出现位置,这个算法由Donald Knuth、Vaughan Pratt、James H. Morris三人于1977年联合发表,故取这3人的姓氏命名此算法。

The algorithm of Knuth Morris and Pratt [KMP 77] makes use of the information gained by previous symbol comparisons. It never re-compares a text symbol that has matched a pattern symbol. As a result the complexity of the searching phase of the Knuth-Morris-Pratt algorithm is in O(n).
However a preprocessing of the pattern is necessary in order to analyze its structure. The preprocessing phase has a complexity of O(m). Since mless or equaln the overall complexity of the Knuth-Morris-Pratt algorithm is in O(n).

KMP 算法核心原理示意图

kmp算法中怎么求next修正值(算法图文动画详解系列)(1)

KMP算法原理详解视频:

算法图文详解:

kmp算法中怎么求next修正值(算法图文动画详解系列)(2)

求解前缀表 next[] 的核心思想

把前缀 P[0:j] 当成是 P 的模式串(P[0:i] ),P 本身当成是查找的文本。

kmp算法中怎么求next修正值(算法图文动画详解系列)(3)

kmp算法中怎么求next修正值(算法图文动画详解系列)(4)

next [] : 前缀表数组,上图中是 lps 数组。

KMP 算法源代码极简版本的 KMP 算法源代码:

next数组首位用-1来填充,这样在处理长度的时候,思维上不会很绕。

/** * getNext (pattern) 函数: 计算字符串 pattern 的最大公共前后缀的长度 (max common prefix suffix length) */ fun getNext(P: String): IntArray { val M = P.length val next = IntArray(M 1 { -1 }) // i: current index of P var i = 0 // j: current index of the longest prefix of P var j = -1 next[0] = -1 // next[i] = j // compute next[i] while (i < M) { // 如果当前字符匹配失败(即P[i] != P[j]) && j != 0 ,则令 i 不变,j = next[j]。 // 此举意味着失配时,"模式串"即前缀P[0:j] 不再从 0 位置开始比对 直接从 j = next [j] 位置开始比对。 while (j >= 0 && P[i] != P[j]) { j = next[j] } i j next[i] = j } return next } /** * kmp substring search algorithm * @param S : the source text string * @param P : the search pattern string */ fun kmp(S: String P: String): Int { val N = S.length val M = P.length if (P.isEmpty()) { return 0 } // j: the current index of P var j = 0 // i: the current index of T var i = 0 // next array val next = getNext(P) while (i < N) { while (j >= 0 && S[i] != P[j]) { j = next[j] } i j // when j == M then pattern is founded in text return the index (i - j) if (j == M) { return i - j } } return -1 } fun main() { var text = "addaabbcaabffffggghhddabcdaaabbbaab" var pattern = "aabbcaab" print("${getNext(pattern).joinToString { it.toString() }} \n") var index = kmp(text pattern) println("$pattern is the substring of $text the index is: $index") text = "hello" pattern = "ll" print("${getNext(pattern).joinToString { it.toString() }} \n") index = kmp(text pattern) println("$pattern is the substring of $text the index is: $index") text = "abbbbbbcccddddaabaacabdcddaabbbbaad" pattern = "aabaacab" print("${getNext(pattern).joinToString { it.toString() }} \n") index = kmp(text pattern) println("$pattern is the substring of $text the index is: $index") } // 输出: //-1 0 1 0 0 0 1 2 3 //aabbcaab is the substring of addaabbcaabffffggghhddabcdaaabbbaab the index is: 3 //-1 0 1 //ll is the substring of hello the index is: 2 //-1 0 1 0 1 2 0 1 0 //aabaacab is the substring of abbbbbbcccddddaabaacabdcddaabbbbaad the index is: 14 另外一个版本代码:

/** * getNext (pattern) 函数: 计算字符串 pattern 的最大公共前后缀的长度 (max common prefix suffix length) */ fun getNext(P: String): IntArray { val M = P.length val next = IntArray(M { -1 }) // i: current index of P var i = 1 // j: current index of the longest prefix of P var j = 0 next[0] = 0 // compute next[i] while (i < M) { if (P[i] == P[j]) { // ① val len = j 1 next[i] = len i j } else { // 如果当前字符匹配失败(即P[i] != P[j]) && j != 0 ,则令 i 不变,j = next[j-1]。 // 此举意味着失配时,"模式串"即前缀P[0:j] 不再从 0 位置开始比对 直接从 next [j-1] 位置开始比对。 if (j != 0) { j = next[j - 1] // j shift left jmp ① } else { next[i] = 0 // now j is 0 next i i } } } return next } /** * kmp substring search algorithm * @param S : the source text string * @param P : the search pattern string */ fun kmp(S: String P: String): Int { val N = S.length val M = P.length if (P.isEmpty()) { return 0 } // j: the current index of P var j = 0 // i: the current index of T var i = 0 // next array val next = getNext(P) while (i < N - M 1) { if (S[i] == P[j]) { i j } else { if (j > 0) { // 当前字符匹配失败(即S[i] != P[j]),则令 i 不变,j = next[j-1]。 // 此举意味着失配时,模式串P 不再从 0 位置开始比对 直接从 next [j-1] 位置开始比对。 j = next[j - 1] } else { i } } // when j == M then pattern is founded in text if (j == M) { return i - M } } return -1 } fun main() { var text = "addaabbcaabffffggghhddabcdaaabbbaab" var pattern = "aabbcaab" print("${getNext(pattern).joinToString { it.toString() }} \n") var index = kmp(text pattern) println("$pattern is the substring of $text the index is: $index") text = "hello" pattern = "ll" print("${getNext(pattern).joinToString { it.toString() }} \n") index = kmp(text pattern) println("$pattern is the substring of $text the index is: $index") text = "abbbbbbcccddddaabaacabdcddaabbbbaad" pattern = "aabaacab" print("${getNext(pattern).joinToString { it.toString() }} \n") index = kmp(text pattern) println("$pattern is the substring of $text the index is: $index") } // 输出: //0 1 0 0 0 1 2 3 //aabbcaab is the substring of addaabbcaabffffggghhddabcdaaabbbaab the index is: 3 //0 1 //ll is the substring of hello the index is: 2 //0 1 0 1 2 0 1 0 //aabaacab is the substring of abbbbbbcccddddaabaacabdcddaabbbbaad the index is: 14 参考资料

https://www.inf.hs-flensburg.de/lang/algorithmen/pattern/kmpen.htm
https://blog.csdn.net/v_july_v/article/details/7041827

猜您喜欢: