快捷搜索:  汽车  科技

python random简单例子(Python中的random模块的函数choice)

python random简单例子(Python中的random模块的函数choice)import random # 生成初始种群 def generate_population(size chromosome_length): population = [] for i in range(size): chromosome = [random.randint(0 1) for _ in range(chromosome_length)] population.append(chromosome) return population # 适应度函数 def fitness(chromosome): return sum(chromosome) # 选择操作 def selection(population fitnesses): return random.choices(populatio

random.choices(population weights=None * cum_weights=None k=1)是Python中random模块提供的一个函数,用于从序列population中随机选择k个元素,并返回一个列表。其中,序列population可以是列表、元组、字符串或其他序列类型。另外,weights参数可以指定每个元素被选择的权重,cum_weights参数可以指定每个元素的累积权重,从而影响元素被选择的概率。

函数参数说明:

  • population:必选参数,表示要从中选择元素的序列,可以是列表、元组、字符串或其他序列类型。
  • weights:可选参数,表示每个元素被选择的权重,必须是一个与population长度相同的列表。如果不指定该参数,则默认每个元素的权重相等。
  • cum_weights:可选参数,表示每个元素的累积权重,必须是一个与population长度相同的列表。如果同时指定了weights和cum_weights参数,则weights参数将被忽略。
  • k:可选参数,表示要选择的元素个数,默认为1。

1、我们使用 random.choices() 从1到6的数字中随机选择一个数字,以模拟掷骰子的结果。

import random # 模拟掷骰子 def roll_die(sides): return random.choices(range(1 sides 1))[0] # 调用掷骰子函数 sides = 6 result = roll_die(sides) print(result)

2、random.choices()函数来实现遗传算法的选择操作

import random # 生成初始种群 def generate_population(size chromosome_length): population = [] for i in range(size): chromosome = [random.randint(0 1) for _ in range(chromosome_length)] population.append(chromosome) return population # 适应度函数 def fitness(chromosome): return sum(chromosome) # 选择操作 def selection(population fitnesses): return random.choices(population weights=fitnesses k=2) # 交叉操作 def crossover(parent1 parent2): point = random.randint(0 len(parent1) - 1) child1 = parent1[:point] parent2[point:] child2 = parent2[:point] parent1[point:] return child1 child2 # 变异操作 def mutation(individual): mutation_rate = 0.01 mutation_range = 0.1 if random.random() < mutation_rate: return [gene random.uniform(-mutation_range mutation_range) for gene in individual] else: return individual # 下一代个体生成 def next_generation(population fitnesses): new_population = [] for i in range(len(population)): parent1 parent2 = selection(population fitnesses) child1 child2 = crossover(parent1 parent2) mutated_child1 = mutation(child1) mutated_child2 = mutation(child2) new_population.append(max([parent1 parent2 mutated_child1 mutated_child2] key=fitness)) return new_population # 遗传算法主函数 def genetic_algorithm(chromosome_length population_size generations): population = generate_population(population_size chromosome_length) for i in range(generations): fitnesses = [fitness(individual) for individual in population] population = next_generation(population fitnesses) return max(population key=fitness) # 调用遗传算法 chromosome_length = 10 population_size = 100 generations = 50 result = genetic_algorithm(chromosome_length population_size generations) print(result)

需要进行选择、交叉和变异操作,以生成新的一代个体。选择操作可以使用random.choices()函数来实现,根据适应度大小来确定每个个体被选中的概率

3、投票分类器融合

import random # 假设有 10 个分类器 classifiers = ["classifier1" "classifier2" "classifier3" "classifier4" "classifier5" "classifier6" "classifier7" "classifier8" "classifier9" "classifier10"] # 定义 vote 函数 def vote(classifiers): predictions = random.choices(classifiers k=5) return max(set(predictions) key=predictions.count) # 调用 vote 函数得到集成预测结果 ensemble_prediction = vote(classifiers) print("集成预测结果:" ensemble_prediction)

python random简单例子(Python中的random模块的函数choice)(1)

猜您喜欢: