快捷搜索:  汽车  科技

如何提高数据运营:糗事百科产品总监李威 如何基于数据构建推荐系统

如何提高数据运营:糗事百科产品总监李威 如何基于数据构建推荐系统运营同学可以通过分析将用户分群,给他们 A、B、C 三套不同的方案,但实际上用户的分群远不止 A、B、C 三组,可能存在千千万万个分组。运营同学没有办法手动做更细致的分群,这时候推荐系统就派上用场了。但在推荐系统的思路里,每个人千人千面,是十分个性化的。设计师辛辛苦苦做出来 A、B、C 三套方案,其实都是可以用的。虽然 A 方案受绝大多数人喜欢,但这并不代表 B、C 方案是没有人喜欢的。如果我们能够利用推荐系统这样的一种思想,采集足够多的用户行为,对其进行分析,就会发现不同用户对不同的封面有不同的喜好,那么 A、B、C 方案就都可以用,只不过针对不同的用户,我们会采用不同的方案。增长策略的发展阶段是这样的:举一个例子,假设我们现在要做一场运营活动,需要一些 banner 或者是入口,设计师会设计几套具体的方案和样式。如果是一位非常懂数据的产品运营,他肯定会同时上线这几个不同的 banner

这句话让我想起 GrowingIO 的创始人 Simon 说什么是增长,“Growth is connecting the existing core value of a product with more people”,这两句话讲的基本上是同一件事情。

连接(connecting)什么呢?

Existing core value,也就是一个产品提供的价值。对于我们的产品来说,就是短视频的内容,对于电商产品来说,就是你要购买的商品,这就是产品的核心价值。

总之,当我看到下面这句话时,我突然联想到,推荐系统所做的,就是增长定义的最核心的事情,所以它是不是可以泛化成一个增长的方法论呢?

2. 推荐系统与精细化运营的关系

增长策略的发展阶段是这样的:

如何提高数据运营:糗事百科产品总监李威 如何基于数据构建推荐系统(1)

  • 最开始,我们没有特别清晰的增长概念,依靠经验或对用户的了解来决策产品要怎么做。
  • 后来,我们会统计一些宏观数据,比如 DAU 或者留存。我们发布一个版本,可能知道这个版本数据涨了,但是没有办法具体到是哪一个环节、哪一个策略导致了产品的增长。
  • 在现阶段,大家开始做精细化数据运营,会针对不同的用户做分群,然后给出具体的策略。但我觉得这样可能还是不够细致,我们要利用推荐系统这样的个性化方法,做到让数据自动决策。

举一个例子,假设我们现在要做一场运营活动,需要一些 banner 或者是入口,设计师会设计几套具体的方案和样式。如果是一位非常懂数据的产品运营,他肯定会同时上线这几个不同的 banner,然后去做 A/B Test,若发现 A 方案比 B 方案好,就会采用 A 方案。

我们公司现阶段也是这样操作的。

但在推荐系统的思路里,每个人千人千面,是十分个性化的。设计师辛辛苦苦做出来 A、B、C 三套方案,其实都是可以用的。虽然 A 方案受绝大多数人喜欢,但这并不代表 B、C 方案是没有人喜欢的。如果我们能够利用推荐系统这样的一种思想,采集足够多的用户行为,对其进行分析,就会发现不同用户对不同的封面有不同的喜好,那么 A、B、C 方案就都可以用,只不过针对不同的用户,我们会采用不同的方案。

运营同学可以通过分析将用户分群,给他们 A、B、C 三套不同的方案,但实际上用户的分群远不止 A、B、C 三组,可能存在千千万万个分组。运营同学没有办法手动做更细致的分群,这时候推荐系统就派上用场了。

2.1 推荐系统的适用场景

我们通常会把用户分成几个阶段,比如说新用户、老用户或者是非常资深的用户,还有一些即将流失的用户。但实际上,我觉得每一个用户可能都处在他的整个产品生命周期中独一无二的阶段,简单的把他们分成四块是不够的,我们需要用推荐系统的思想去分析具体的数据。

比如说,我们要做召回策略,每一个用户可能都有他非常个性的一个召回方案,这就是我认为整个增长接下来会逐渐进入的、更加细致的一个领域。我们给系统提供数据,系统通过一些策略自动给出决策。后面我来说几个这种泛化的可能实施的领域和方案,当然只是我的设想,实际上还没有完全落地。

如何提高数据运营:糗事百科产品总监李威 如何基于数据构建推荐系统(2)

个性化的活动运营、视觉设计

左边这张图是淘宝的首页,下面有一些子栏目,比如说聚划算、淘宝直播、官方补贴、每日红包,配了很多个性化的图片,但没有单独用文字。

比如说,最近我们家小朋友过生日,我看了很多与玩具相关的内容,再打开淘宝的时候,我发现那里仍然是官方补贴、每日红包等,但配图已经变成了与游戏相关的。因为淘宝本身是做电商的,它的配图可以直接用商品的图片。在做运营的活动封面时,每个用户可能喜欢不一样的图片风格,或冷色调,或鲜艳,或柔和。

那么设计师在出不同设计方案的时候,可能需要给封面增加一些关键词,比如说这个是鲜艳的,那个是冷色调的,诸如此类。随着多次做活动运营的设计,以及采集了足够多用户的数据,你可以知道每一个用户的颜色偏好。

精细化的用户运营召回方案

右图是手机上的短信页面,每日优鲜经常给我发这种召回短信,它的每一句话都不一样,但实际上并不是个性化的,没有特别打动我。像这种,同样可以通过学习用户的数据来掌握其语言偏好,给每个用户发不一样的召回短信。比如对于直男来说,一个软妹风的话术会更好。

注册转化流程的优化

甚至在极端的注册转化流程当中,也可以尝试利用推荐系统的思想给每个用户生成不同的注册转化流程。

当然这里面涉及一些问题,转化适用于全新的用户,你不太能获知这些用户之前的数据。但是如果你公司很大,或者是用户量非常大,比如说腾讯,你可能会提前知道这个用户大致的画像,那注册转化流程其实是可以提前设计好的,等用户来注册这个新应用的时候,就可以个性化的给他展示这一注册转化流程了。

2.2 推荐系统的困境

在不同场景和领域实施推荐系统的时候可能会碰到一些阻碍:

系统本身比较复杂,成本较高,可能造成投入产出不合理

之前我们把用户分成新用户、老用户、即将流失的用户,可能以很简单的工作就可以完成 80%的任务。而如果我们要利用推荐系统,那可能要投入 80% 的精力才能获得 20% 的提升。

推荐系统毕竟是基于大数据的分析,如果你不具备生产大量数据的条件,就很难做到在不同的运营、产品或者设计领域去泛化推荐系统的能力

所谓推荐系统,就是利用了机器善于计算的事实。我们人类非常善于联想、善于洞察事物之间关系的,可以发现一些用户同时喜欢摄影和游戏,但如果要真正做到个性化,最终还是要利用机器的计算能力。

如何提高数据运营:糗事百科产品总监李威 如何基于数据构建推荐系统(3)

以上就是我在做推荐系统的过程中,关于后续增长、发展方向的一点点想法,我们已经处于精细化运营的产品阶段,可能需要再往前走一步,让机器来帮助我们实现自动化运营,做得更加精细。

3. 推荐系统的增长实践

接下来是我在做推荐系统过程中,跟数据有关的一些案例,可能对大家有所帮助。

3.1 数据选取阶段

这一阶段需要考虑两点:

1)数据需要更形象

例1:发现更适合推荐系统的数据

做推荐系统最开始肯定是要分析,要利用哪些数据来发现用户的偏好,显然,点赞是一个能够明确知道用户偏好的行为,肯定是可以被利用的一个数据。但是否是最好的数据呢?

我们来看下面这两张图。左边这张图是用户相应行为的人数,包括视频观看、点赞成功、评论成功。我们可以发现,虽然点赞这个事情非常清晰的预示着这个用户的喜好,但是真正有点赞行为的用户并没有那么多。

哪个数据用户行为最多呢?明显是视频观看。因为用户来这里,就是为了观看视频。

如何提高数据运营:糗事百科产品总监李威 如何基于数据构建推荐系统(4)

右边这张图是人均相应行为个数。同样的,你可以发现,虽然点赞成功这件事情非常明确的标志着用户的偏好,但是他的行为量还是相对比较少,真正行为量最多的是视频观看行为。那视频观看行为能否预示用户的偏好呢?其实是可以的。一个用户去看这个视频,如果他不喜欢,他肯定只看两三秒就离开了。如果他把这个视频看完了,就可以预示他对这个视频有偏好。所以我们在做数据分析,或者所有的这些增长之前,要对手头的数据有一个更形象的认知,从不同的维度,平均数、方差、中位数等把这个数据图表化,这样才能选取合适的数据来做我们希望的分析。

例 2:内容曝光量分析

另外一个例子是视频曝光的数据。当这个视频出现在用户的屏幕上,就算一次曝光。下图代表视频曝光的平均数、中位数、以及最上面的 75 分位。我们可以发现一个问题,中位数是远远低于平均数的,平均数甚至接近 75 分位。

如何提高数据运营:糗事百科产品总监李威 如何基于数据构建推荐系统(5)

猜您喜欢: