ntc热敏电阻工作原理是什么?NTC热敏电阻是什么
ntc热敏电阻工作原理是什么?NTC热敏电阻是什么笔者将其简称为贴片NTC热敏电阻。现在我们来看看它有哪些具体应用。而关于NTC热敏电阻的分类,则可分为盘式、SMD、玻璃封装二极管、树脂封装被膜线等形状,作为温度保护器件嵌入到电路中的,则是通过积层工艺制造的SMD形状贴片NTC热敏电阻。大家可以看到,NTC热敏电阻是热敏电阻的一部分,其电阻值是随着温度的升高而减小的,英文就用“negative”指代,而negative这个词的意思是消极的、否定的、阴性的,放在热敏电阻这个语境当中指的就是下降的,这样就明白了为什么它叫做NTC热敏电阻。明白了NTC热敏电阻的性质,我们就可以把它应用在多种场合当中,这其中温度检测和温度补偿是用的比较多的。举个例子,使用晶体管或晶振的电子电路的工作情况,因温度变化而会稍稍不稳定,此时,通过将电阻值会随温度上升而下降的NTC热敏电阻嵌入电路中,便可保持电路稳定工作了。
##科技#
从事电子行业的朋友们,应该对热敏电阻不陌生吧!那么笔者在这里抛出一个问题:你知道NTC热敏电阻是什么吗?
百度百科上给的定义是:热敏电阻是一种传感器电阻,其电阻值随着温度的变化而改变。按照温度系数不同分为正温度系数热敏电阻(PTC thermistor,即 Positive Temperature Coefficient thermistor)和负温度系数热敏电阻(NTC thermistor,即 Negative Temperature Coefficient thermistor)。正温度系数热敏电阻器的电阻值随温度的升高而增大,负温度系数热敏电阻器的电阻值随温度的升高而减小。它们同属于半导体器件。
NTC热敏电阻(图片来源:网络)
大家可以看到,NTC热敏电阻是热敏电阻的一部分,其电阻值是随着温度的升高而减小的,英文就用“negative”指代,而negative这个词的意思是消极的、否定的、阴性的,放在热敏电阻这个语境当中指的就是下降的,这样就明白了为什么它叫做NTC热敏电阻。
明白了NTC热敏电阻的性质,我们就可以把它应用在多种场合当中,这其中温度检测和温度补偿是用的比较多的。
举个例子,使用晶体管或晶振的电子电路的工作情况,因温度变化而会稍稍不稳定,此时,通过将电阻值会随温度上升而下降的NTC热敏电阻嵌入电路中,便可保持电路稳定工作了。
而关于NTC热敏电阻的分类,则可分为盘式、SMD、玻璃封装二极管、树脂封装被膜线等形状,作为温度保护器件嵌入到电路中的,则是通过积层工艺制造的SMD形状贴片NTC热敏电阻。
笔者将其简称为贴片NTC热敏电阻。现在我们来看看它有哪些具体应用。
一、智能手机/平板当中的温度检测与温度补偿智能手机或平板中,会使用多个NTC热敏电阻,用于温度检测以及温度补偿。其使用实例如下图所示:
智能手机/平板NTC热敏电阻(温度检测/温度补偿)的主要使用示例(图片来源:网络)
其基本电路是与NTC热敏电阻以及固定电阻进行串联的分压电路。CPU及功率模块等安装在发热部位附近的NTC热敏电阻,其电阻值会随温度上升而下降,因此分压电路的输出电压会发生变化。
该变化输送至微控制器后,将会保护电路元件免受过热造成的影响,或者也可进行温度补偿。
温度检测/温度补偿基本电路(图片来源:网络)
二、移动设备电池充电中的温度检测智能手机等移动设备的电池组中(锂离子电池)除了 端子与-端子之外,还有另外一个端子----T端子。是用来温度监测的,其内部也搭载有NTC热敏电阻。
在电池温度上升时,NTC热敏电阻的温度也会随之上升,从而电阻值会下降,当超过上限充电温度时,充电控制IC将会停止充电。
下图为基本的电路示例。电池组内的保护IC会测量电池电压,从而防止过充电或过放电。
在快速充电等要求充电控制更为精准的情况时,将会使NTC热敏电阻与充电控制IC进行连接,从而用于测量环境温度。
移动设备电池充电中的温度检测(图片来源:网络)
三、微控制器的温度检测由于智能手机等微控制器需要确保工作的可靠性,因此需要保护其免受过热所带来的影响。下图为组合了NTC热敏电阻与固定电阻的微控制器温度保护电路示例。
微控制器的温度检测(图片来源:网络)
由上图所示,NTC热敏电阻由固定电阻RS与分压电路构成。若流过过度的电路,NTC热敏电阻温度将会上升,电阻值将会下降,从而将抑制微控制器的驱动电压。
使用的电路元件为小型SMD贴片式的NTC热敏电阻以及电阻器,因此直接贴装于电路基板或发热部上,即可起到有效的温度保护作用。
四、LED照明系统的温度检测LED照明,大家应该都不陌生吧!我们要明白的是,虽然LED照明耗电量低、寿命长,但根据不同的使用方法,会出现寿命缩短、发光效率降低等情况。
这是什么原因呢?原来,LED器件中作为发光层的半导体PN接合面会发热,该温度称为接合温度。流过LED的电流变大时,亮度将会提高,发热量也会随之增加,从而接合温度将会变高,寿命将会缩短;若接合温度过低时,发光效率将会下降,从而亮度将会降低。
为此,为了发挥LED的最大效率,需要以最佳温度进行工作。这就需要NTC热敏电阻大显身手了。
通过将NTC热敏电阻嵌入电路,并与LED进行热耦合后,便可作为简易温度保护电路进行工作。若与最佳工作温度存在偏差,则会以NTC热敏电阻的电阻变化形式表现出来,此时将会对流过LED的电流进行补偿。最终将会在降低LED电力损耗的同时,实现长寿命化。
LED照明系统的温度检测(图片来源:网络)