快捷搜索:  汽车  科技

buck高压降压电路:小知识直流降压

buck高压降压电路:小知识直流降压IC所允许的最大功耗取决于IC的封装、PCB布局和应用中的最高环境温度。在进行PCB设计时将连接到IC接脚和封装的散热焊盘的铜线加宽可增加耗散功率的能力。在应用中的平均电流必须比转换器的额定负载电流低,二者之间的差异和转换器的功耗与在应用中的散热条件有关。 此平均电流会决定开关MOSFET的热损耗,其中包括了导通损耗与开关损耗。导通损耗和内部MOSFET的导通电阻 (RDS(ON) ) 有关:即 I2* RDS(ON)。若高侧和低侧的 RDS(ON) 不一样,在考虑在应用中的降压比时,也须同时考虑高侧和低侧MOSFET的功耗。开关损耗则与电流、输入电压、和开关频率有关。在一般标准应用中,开关损耗大约是总损耗的30%;但在高输入电压或高频率的应用中,开关损耗会大幅增加。18V HVBuck转换器常用于12V电源的应用中,但因其具有宽电压范围,所以也能用于5V电源的应用。而在 21V / 23

Buck转换器的基础知识

Buck转换器是一种开关模式的降压型转压器,它能提供在高压降比 (VIN/VOUT) 和高负载电流下的高效率与灵活性。其基本电路如图一所示。大多数Buck转换器的内部包含一个高侧MOSFET及由内部占空比之控制电路来切换的低侧同步整流MOSFET,用以调节平均输出电压。 其开关节点之波形由外部LC滤波器过滤;透过反馈回路检测输出电压,并控制高侧MOSFET的占空比,从而达到稳压功能。非同部器件无内部低侧MOSFET,仅在外部开关节点到地之间连接一个肖特基二极管。

buck高压降压电路:小知识直流降压(1)

MOSFET是在轮流通断的模式下,所以功耗很低;而藉由控制MOSFET的占空比,可达到高压降比 (VIN/VOUT)。内部MOSFET的导通电阻 (RDS(ON) ) 会决定Buck转换器的负载能力,而MOSFET的额定电压则决定其最大输入电压。

电压和电流绝对最大额定值的选择应用之输入电压

在挑选合适的Buck转换器时,首先要考虑的参数是输入电压范围。立锜的Buck转换器主要可分为三类:

  • LVBuck转换器:输入电压 (VIN) 范围为2.5V 至 5.5V
  • 18V HVBuck转换器:输入电压 (VIN) 范围为4.5V 至 18V
  • HVBuck转换器:输入电压 (VIN) 范围为4.5V 至 80V。

LVBuck转换器最适用于单节锂离子电池供电的场合,但也可用于5V电源的应用中。

18V HVBuck转换器常用于12V电源的应用中,但因其具有宽电压范围,所以也能用于5V电源的应用。

而在 21V / 23V / 24V至80V的器件则有非常广泛的应用范围。 若输入电压的容差范围较大,或需Buck转换器来面对波动的输入电压的应用,通常会选用这些器件。36V器件通常用于如24V直流之工业供电的应用,或电源存在大幅波动如13.5V车用电池之汽车应用。

应用电流之消耗

在考虑Buck转换器的额定负载电流时,应用中所消耗的平均电流和最大电流都需要考虑到。

在应用中的平均电流必须比转换器的额定负载电流低,二者之间的差异和转换器的功耗与在应用中的散热条件有关。 此平均电流会决定开关MOSFET的热损耗,其中包括了导通损耗与开关损耗。导通损耗和内部MOSFET的导通电阻 (RDS(ON) ) 有关:即 I2* RDS(ON)。若高侧和低侧的 RDS(ON) 不一样,在考虑在应用中的降压比时,也须同时考虑高侧和低侧MOSFET的功耗。开关损耗则与电流、输入电压、和开关频率有关。在一般标准应用中,开关损耗大约是总损耗的30%;但在高输入电压或高频率的应用中,开关损耗会大幅增加。

IC所允许的最大功耗取决于IC的封装、PCB布局和应用中的最高环境温度。在进行PCB设计时将连接到IC接脚和封装的散热焊盘的铜线加宽可增加耗散功率的能力。

buck高压降压电路:小知识直流降压(2)

轻载效率(PFM型或强制PWM型)

对于用于低功率待机模式的电源,最好能尽量提高Buck转换器在轻载时的效率。强制PWM型的Buck转换器之开关频率在全负载范围内均为恒定,若在轻载时使用高开关频率,则绝大部分的损耗都会是由开关损耗所引起。具提升轻载效率的Buck转换器会在轻载时降低开关频率,通常被称作脉冲省略模式(PFM**)。其操作原理如下:当负载减少时,电感电流之谷值会在特定点降到零,若是强制PWM型器件,其低侧MOSFET会持续导通,造成电感电流甚至变为负的。若是PFM型器件,其低侧 MOSFET会被关断,使开关节点浮接,直等到下一次高侧MOSFET导通。高侧MOSFET的最小导通时间决定电感的峰值电流,而平均电流只能透过降低开关频率而降低,也就是藉由调整内部频率达到省略脉冲的效果。PFM模式的电压调节主要是透过比较输出电压纹波的波谷与内部参考电压来达成。PFM模式可在轻载时将转换器的开关频率降到非常低,如几kHz,因此可减少开关损耗,进而大为提高轻载效率。开关频率注意事项

Buck转换器的开关频率是很重要的参数。开关频率较高就能使用较小的电感和电容,而且对阶跃负载的响应较好。但是高频率会增加开关损耗,且使EMI辐射的频率范围变大。开关频率较高也会限制可实现的最大降压比,因为最小占空比受限于转换器的最小导通时间和开关频率:

buck高压降压电路:小知识直流降压(3)

例如,tON min = 100nsec,转换器,其最小占空比为12%,它无法从12V降压至1.2V;一个800kHz的转换器,其最小占空比为8%,则可从12V降压至1.2V。

非常高频的Buck转换器(> 1MHz的)通常用于输入电压非常低的应用,如5V或更低,因为输入电压低,开关损耗较低,且这类应用的最大降压比也较小。

对于大多数12V的应用,开关频率在500kHz800kHz较适合,可同时兼顾开关损耗和器件尺寸。

在高电流与高输入电压(> 18V)的应用中,开关频率最好低于500kHz,以降低开关损耗,并取得高降压比。

Buck转换器控制架构的选择标准

DC / DC产品包含了广泛且不同控制架构的Buck转换器,有电流模式(CM)、电流模式-恒定导通时间 (CMCOT) 、和立锜专有之先进恒定导通时间 (COT) 控制架构等。每种架构都有其优点和缺点,因此在为应用实际挑选Buck转换器时,最好能先了解每种架构的特点。

Buck转换器的其它选择标准外部软启动

ForDevices所有的Buck转换器都具有软启动功能。在转换器启动后,占空比会逐渐增加,使输出电压平稳上升,这样可避免因突然对输出电容充电而产生的浪涌电流。有内部软启动的转换器会有一恒定的软启动时间。如果应用中需使用非常大的输出电容或需要特定的软启动时间,则最好选择由外部控制软启动的转换器,其软启动时间可由外部电容来设定。

外部补偿

电流模式转换器的误差放大器需要补偿,以确保电路的稳定。 II 型补偿元件决定转换器的带宽及相位。可外部补偿的转换器,即使在不同类型的输出电容、较宽的输入和输出电压范围的条件下,要设定所需的带宽和相位边限时,都较有弹性。

可设定频率

有些转换器有设定频率的功能:即开关频率可藉由外部电阻来设定,提供选择最佳开关频率的弹性。选择高频率可降低纹波、器件尺寸,也有较好的瞬态表现。选择低频率则可提高效率,或降低高阶的谐波。

外部同步输入

有些电流模式转换器具有外部同步输入,使内部时钟与外部时钟信号同步,如此可精确设定开关频率(在较敏感频段,可避免噪声),也可同时使多个转换器操作于相同频率。

低压差模式或100% 占空比模式

许多LV系列之电流模式Buck转换器具有低压差模式之功能:当输入下降时,这些Buck转换器会慢慢增加占空比,而当输入电压低于调节的目标电压时,则会持续导通高侧MOSFET。这种功能特别适合于电池供电的应用;当电池电力几乎耗尽时,能延长电池使用时间。

电源良好(Power Good) 之功能:

电源良好(Power Good) 之功能是监控Buck转换器的输出信号,并告知系统输出电压在特定的工作范围的信号。
电源良好(Power Good),可用于系统初始化、故障保护、或启动程序。

过电流保护:

ForDevices 所有的Buck转换器都有过电流保护(OCP)。当电感电流超过OCP值时,转换器的占空比会被限制住。若负载继续增加,将导致输出下沉。然而,在过载发生时,系统会有几种不同的处理方式:

  • 闭锁模式OCP:当过载发生、输出电压低于欠压保护(UVP)值时,系统会关闭并锁住。该转换器需要被重新启用或重新加电以重新启动。这种方式可确保过载之后零功耗,但无法自动重启。
  • 打嗝模式OCP:当过载发生、输出电压低于欠压保护(UVP)值时,系统会关闭,并以软启动重新启动。过载持续发生就会看见关闭 / 重启的周期持续发生,也称为打嗝模式。打嗝模式的优点是低平均过载电流,且过载情况消失后,可自动重启。
  • 无欠压保护 (UVP):当过载发生时,输出电压降低,但没有欠压保护(UVP)。在过载期间,系统持续以OCP电流操作。当过载情况消失后,输出电压即立即恢复。但持续以OCP电流操作,在长期过载的情况下,会造成温度增加。

猜您喜欢: