四个关系正确处理方案,三个二次难以厘清的关系
四个关系正确处理方案,三个二次难以厘清的关系(1)现实世界与日常生活中,与等量关系一样,不等量关系也是自然界中存在着的基本数量关系.1.不等式的概念(2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.一、不等关系
考纲原文1.不等关系
了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.
2.一元二次不等式
(1)会从实际情境中抽象出一元二次不等式模型.
(2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.
(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.
知识点详解一、不等关系
1.不等式的概念
(1)现实世界与日常生活中,与等量关系一样,不等量关系也是自然界中存在着的基本数量关系.
(2)用数学符号“>”“<”“≥”“≤”连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.
二、一元二次不等式及其解法
1.一元二次不等式的概念
我们把只含有一个未知数,并且未知数的最高次数是2的不等式称为一元二次不等式,有下列三种形式:
3.一元二次不等式的解法
由一元二次不等式与相应的方程、函数之间的关系可知 求一元二次不等式的解集的步骤如下:
4.一元二次不等式恒成立问题
考向一 比较大小
比较大小的常用方法:
(1)作差法的一般步骤是:作差,变形,定号,得出结论.
注意:只需要判断差的符号,至于差的值究竟是什么无关紧要,通常将差化为完全平方式的形式或者多个因式的积的形式.
(2)作商法的一般步骤是:作商,变形,判断商与1的大小,得出结论.
注意:作商时各式的符号为正,若都为负,则结果相反.
(3)介值比较法:
①介值比较法的理论根据是:若a>b b>c 则a>c,其中b是a与c的中介值.
②介值比较法的关键是通过不等式的恰当放缩,找出一个比较合适的中介值.
(4)利用单调性比较大小.
(5)函数法,即把要比较的数值通过构造函数转化为该函数的函数值,然后利用函数的单调性将其进一步转化为自变量的大小问题来解决.
【名师点睛】
在用介值法比较时,中介值一般是通过放缩变形,得到一个中间的参照式(或数),其放缩的手段可能是基本不等式、三角函数的有界性等.
考向二 求范围的问题
求范围的问题需用到不等式的性质,熟记不等式性质中的条件与结论是基础,灵活运用是关键.
在使用不等式的性质时,一定要注意不等式成立的前提条件,特别是不等式两端同时乘以或同时除以一个数、两个不等式相乘、一个不等式两端同时求n次方时,一定要注意其成立的前提条件,如果忽视前提条件就可能出现错误.
求范围的一般思路是:
(1)借助性质,转化为同向不等式相加进行解答;
(2)借助所给条件整体使用,切不可随意拆分所给条件;
(3)结合不等式的传递性进行求解;
(4)要注意不等式同向可乘性的适用条件及整体思想的运用.
考向三 一元二次不等式的解法
1.解不含参数的一元二次不等式的方法:
(1)若不等式对应的一元二次方程能够因式分解 即能够转化为几个代数式的乘积形式 则可以直接由一元二次方程的根及不等号方向得到不等式的解集.
(2)若不等式对应的一元二次方程能够化为完全平方式 不论取何值,完全平方式始终大于或等于零,不等式的解集易得.
(3)若上述两种方法均不能解决 则应采用求一元二次不等式的解集的通法 即判别式法.
考向四 一元二次不等式与二次函数、一元二次方程之间关系的应用
一元二次不等式与其对应的函数与方程之间存在着密切的联系.在解决具体的数学问题时 要注意三者之间的相互联系 并在一定条件下相互转换.
(1)若一元二次不等式的解集为区间的形式,则区间的端点值恰是对应一元二次方程的根,要注意解集的形式与二次项系数的联系.
(2)若一元二次不等式的解集为R或∅,则问题可转化为恒成立问题,此时可以根据二次函数图象与x轴的交点情况确定对应一元二次方程的判别式的符号,进而求出参数的取值范围.
考向五 一元二次不等式的应用
对于分式不等式和高次不等式,它们都可以转化为一元二次不等式或利用一元二次不等式的思想求解.
考向六 含参不等式恒成立问题的求解策略
解决含参不等式恒成立问题的关键是转化与化归思想的运用,从解题策略的角度看,一般而言,针对不等式的表现形式,有如下四种策略:
(1)变换主元,转化为一次函数问题. 解决恒成立问题一定要搞清谁是主元,谁是参数.参数和未知数是相互牵制、相互依赖的关系,有时候变换主元,可以起到事半功倍的效果.
(2)联系不等式、函数、方程,转化为方程根的分布问题.
(3)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x轴下方.常转化为求二次函数的最值或用分离参数法求最值.即