boost升压电路分析(升压电路-Boost)
boost升压电路分析(升压电路-Boost)这里的电感在一个周期内有可能全部大于零,有可能等于零,全部大于零时候处于连续工作模式(CCM),等于零时候称为断续工作模式(DCM)。一般输出电容C2要足够大,这样在输出端才能保证放电时候能够保持一个持续的电流,同时二极管一般至少采用快恢复二极管。当开关管不导通时候,此时Q1相当于断开,由于电感有反向电动势作用,电感的电流不能瞬时突变,而是会缓慢的逐渐放电。由于原来的电回路已经断开,电感只能通过D1、负载、C1回路放电,也就是说电感开始给电容C2充电,加上给C2充电之前已经有C2提供电压,因此电容两端电压升高,这也是叫升压电路的原因。这时候输入电压流过电容C1滤波,电感L1、MOS管Q1,随着L1不断充电,电感上的电流线性增加,到达一定时候电感储存了一定能量;在这过程当中,二极管D1反偏截止,由电容C2(电容C2有电是因为上一次放电时给电容C2充电)给负载提供能量,维持负载工作;放电过程:
boost升压电路(boost converter or step-up converter)是一种常见的开关直流升压电路,它通过开关管导通和关断来控制电感储存和释放能量,从而使输出电压比输入电压高。
现在的开关电源一般是由脉冲宽度调制(PWM)控制IC和MOSFET构成,结合各种开关电源拓扑结构,组成完整的开关电源,开关电源最主要的是开关IC,如下图是BOOST升压电路拓扑结构,主要是由电感L1、开关管Q1以及二极管D1组成。
工作过程可分为充电和放电两部分
充电过程:在充电时候,开关管导通,可理解为MOS管这里相当于一根线直接将漏极D和源极连起来,相当于把MOS管短接,化简原理图
这时候输入电压流过电容C1滤波,电感L1、MOS管
Q1,随着L1不断充电,电感上的电流线性增加,到达一定时候电感储存了一定能量;在这过程当中,二极管D1反偏截止,由电容C2(电容C2有电是因为上一次放电时给电容C2充电)给负载提供能量,维持负载工作;
放电过程:
当开关管不导通时候,此时Q1相当于断开,由于电感有反向电动势作用,电感的电流不能瞬时突变,而是会缓慢的逐渐放电。由于原来的电回路已经断开,电感只能通过D1、负载、C1回路放电,也就是说电感开始给电容C2充电,加上给C2充电之前已经有C2提供电压,因此电容两端电压升高,这也是叫升压电路的原因。
这里的电感在一个周期内有可能全部大于零,有可能等于零,全部大于零时候处于连续工作模式(CCM),等于零时候称为断续工作模式(DCM)。一般输出电容C2要足够大,这样在输出端才能保证放电时候能够保持一个持续的电流,同时二极管一般至少采用快恢复二极管。
原理图设计
说明:MP1584升压电路,支持12V/200mA电流输出。
说明:MP9185升压电路,支持30W输出。
设计说明:
1、输入部分增加TVS,防浪涌;
2、输入部分增加了防反接肖特基二极管,防止电源反接烧IC,如果输入电流大的话,可以使用PMOS管做防反接设计;
3、MP9185输出部分增加了PTC限流保护,限流2A;
4、功率电感的饱和电流,最好大于升压IC内置开关的限制电流,至少需要大于开机时,对输出滤波电容的充电
2、PCB设计
设计说明:
1、开关环路尽量小,稳定环路,降低EMC;
2、模拟器件尽量靠近IC,同时避免开关环路的干扰;
3、FB取样点在输出滤波电容上,提供环路稳定性;
2、调试
1、确保焊接无误,上电之前,可以用万用表测量输入与输出部分对地的阻抗,防止短路,或取样电阻焊接错误;
2、上电前,直流电源限流保护;
3、万用表测试输出电压是否正常,如果不正常,检测器件焊接;
4、示波器测开关波形,与datasheet参照,确保开关波形正常;
5、输出短路,输入反接等保护测试;
6、老化测试。