三角形八角模型解法(双等腰三角形模型)
三角形八角模型解法(双等腰三角形模型)(1)如图,若点D在线段BC上,点E在线段AC上26.(12分)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=a,∠CDE=题再现
八上:双等腰三角形模型原创 人可 人可快乐数学 1月5日
八上:双等腰三角形模型
2018年八上期末考试题T26
原 题 再 现 |
26.(12分)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=a,∠CDE= (1)如图,若点D在线段BC上,点E在线段AC上 ①如果∠ABC=50°,∠ADE=80°,那么a=_______ =_______ ②求a, 之间的关系式 (2)是否存在不同于以上②中的a, 之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,请说明理由 |
考 察 知 识 |
本题是等腰三角形的性质、三角角的内角和与外角性质 难点是在运动时,出现多种情况的双等三角形 考察了学生的分类思想和画图能力. |
动 画 演 示 |
01:51 |
解 题 思 路 |
情况1: ∵∠1 ∠β=∠α ∠B ∠1=∠2=∠β ∠C 代入上式得 ∴∠β ∠C ∠β=∠α ∠B 得到:∠α=2∠β |
情况2: ∵∠ABC=∠1 ∠α ∠ACB=∠β ∠2 代入上式得 ∴∠1 ∠α=∠β ∠2 ∠α=∠β ∠2-∠1 得到:∠α=2∠β | |
情况3: ∵∠E ∠C ∠α=180 ∠2=∠β ∠B即∠B=∠2-∠β=∠C代入上式得 ∴∠E ∠2-∠β ∠α=180 ∴∠α-∠β ∠α=180 得到:2∠α-∠β=180 | |
情况4: ∵∠E ∠C ∠α=180 ∠ABC=∠β ∠2=∠C代入上式得 ∴∠E ∠2 ∠β ∠α=180 ∴∠α ∠β ∠α=180 得到:2∠α ∠β=180 |