快捷搜索:  汽车  科技

矩阵算法方法(算法之2矩阵乘法的Strassen算法)

矩阵算法方法(算法之2矩阵乘法的Strassen算法)其中的方矩阵,求 C=AB ,如下所示:。Strassen算法证明了存在时间复杂度低于的算法。假设矩阵 A 和矩阵 B 都是

一般的矩阵乘法算法时间复杂度为

矩阵算法方法(算法之2矩阵乘法的Strassen算法)(1)

1969年,Volker Strassen第一个提出了复杂度低于

矩阵算法方法(算法之2矩阵乘法的Strassen算法)(2)

的矩阵乘法算法,算法时间复杂度为

矩阵算法方法(算法之2矩阵乘法的Strassen算法)(3)

。Strassen算法证明了存在时间复杂度低于

矩阵算法方法(算法之2矩阵乘法的Strassen算法)(4)

的算法。

假设矩阵 A 和矩阵 B 都是

矩阵算法方法(算法之2矩阵乘法的Strassen算法)(5)

的方矩阵,求 C=AB ,如下所示:

矩阵算法方法(算法之2矩阵乘法的Strassen算法)(6)

其中

矩阵算法方法(算法之2矩阵乘法的Strassen算法)(7)

矩阵 C 可以通过下列公式求出:

矩阵算法方法(算法之2矩阵乘法的Strassen算法)(8)

从上述公式我们可以得出,计算2个 n * n 的矩阵相乘需要2个

矩阵算法方法(算法之2矩阵乘法的Strassen算法)(9)

的矩阵8次乘法和4次加法。我们使用 T (n) 表示 n * n 矩阵乘法的时间复杂度,那么我们可以根据上面的分解得到下面的递推公式:

矩阵算法方法(算法之2矩阵乘法的Strassen算法)(10)

其中,

  1. 1.

矩阵算法方法(算法之2矩阵乘法的Strassen算法)(11)

表示8次矩阵乘法,而且相乘的矩阵规模降到了

矩阵算法方法(算法之2矩阵乘法的Strassen算法)(12)

  1. 2.

矩阵算法方法(算法之2矩阵乘法的Strassen算法)(13)

表示4次矩阵加法的时间复杂度以及合并矩阵 C 的时间复杂度。

最终可计算得到

矩阵算法方法(算法之2矩阵乘法的Strassen算法)(14)

现在,我们来看一下Strassen算法的原理。

仍然把每个矩阵分割为4份,然后创建如下10个中间矩阵:

S1 = B12 - B22
S2 = A11 A12
S3 = A21 A22
S4 = B21 - B11
S5 = A11 A22
S6 = B11 B22
S7 = A12 - A22
S8 = B21 B22
S9 = A11 - A21
S10 = B11 B12

接着,计算7次矩阵乘法:

P1 = A11 • S1
P2 = S2 • B22
P3 = S3 • B11
P4 = A22 • S4
P5 = S5 • S6
P6 = S7 • S8
P7 = S9 • S10

最后,根据这7个结果就可以计算出C矩阵:


C11 = P5 P4 - P2 P6
C12 = P1 P2
C21 = P3 P4
C22 = P5 P1 - P3 - P7

T(n) = 7T(n/2) Θ(n2)

使用递归树或主方法可以计算出结果:

T(n) = Θ(nlg7) ≈ Θ(n2.81)

下图展示了平凡算法和Strassen算法的性能差异,n越大,Strassen算法节约的时间越多。

矩阵算法方法(算法之2矩阵乘法的Strassen算法)(15)

代码如下:

import java.util.Arrays;

public class MatrixMultiply {

public static void SquareMatrixMultiply(int A[][] int B[][]) {

int rows = A.length;

int C[][] = new int[rows][rows];

for (int i = 0; i < rows; i ) {

for (int j = 0; j < rows; j ) {

C[i][j] = 0;

for (int k = 0; k < rows; k ) {

C[i][j] = A[i][k] * B[k][j];

}

}

}

displaySquare(C);

}

public static void displaySquare(int matrix[][]) {

for (int i = 0; i < matrix.length; i ) {

for (int j : matrix[i]) {

System.out.print(j " ");

}

System.out.println();

}

}

public static void copyToMatrixArray(int srcMatrix[][] int startI int startJ int iLen int jLen

int destMatrix[][]) {

for (int i = startI; i < startI iLen; i ) {

for (int j = startJ; j < startJ jLen; j ) {

destMatrix[i - startI][j - startJ] = srcMatrix[i][j];

}

}

}

public static void copyFromMatrixArray(int destMatrix[][] int startI int startJ int iLen int jLen

int srcMatrix[][]) {

for (int i = 0; i < iLen; i ) {

for (int j = 0; j < jLen; j ) {

destMatrix[startI i][startJ j] = srcMatrix[i][j];

}

}

}

public static void squareMatrixAdd(int A[][] int B[][] int C[][]) {

for (int i = 0; i < A.length; i ) {

for (int j = 0; j < A[i].length; j ) {

C[i][j] = A[i][j] B[i][j];

}

}

}

public static void squareMatrixSub(int A[][] int B[][] int C[][]) {

for (int i = 0; i < A.length; i ) {

for (int j = 0; j < A[i].length; j ) {

C[i][j] = A[i][j] - B[i][j];

}

}

}

public static int[][] squareMatrixMultiplyRecursive(int A[][] int B[][]) {

int n = A.length;

int C[][] = new int[n][n];

if (n == 1) {

C[0][0] = A[0][0] * B[0][0];

} else {

int A11[][] A12[][] A21[][] A22[][];

int B11[][] B12[][] B21[][] B22[][];

int C11[][] C12[][] C21[][] C22[][];

A11 = new int[n/2][n/2];A12 = new int[n/2][n/2];A21 = new int[n/2][n/2];A22 = new int[n/2][n/2];

copyToMatrixArray(A 0 0 n/2 n/2 A11);

copyToMatrixArray(A 0 n/2 n/2 n/2 A12);

copyToMatrixArray(A n/2 0 n/2 n/2 A21);

copyToMatrixArray(A n/2 n/2 n/2 n/2 A22);

B11 = new int[n/2][n/2];B12 = new int[n/2][n/2];B21 = new int[n/2][n/2];B22 = new int[n/2][n/2];

copyToMatrixArray(B 0 0 n/2 n/2 B11);

copyToMatrixArray(B 0 n/2 n/2 n/2 B12);

copyToMatrixArray(B n/2 0 n/2 n/2 B21);

copyToMatrixArray(B n/2 n/2 n/2 n/2 B22);

C11 = new int[n/2][n/2];C12 = new int[n/2][n/2];C21 = new int[n/2][n/2];C22 = new int[n/2][n/2];

squareMatrixAdd(squareMatrixMultiplyRecursive(A11 B11) squareMatrixMultiplyRecursive(A12 B21)

C11);

squareMatrixAdd(squareMatrixMultiplyRecursive(A11 B12) squareMatrixMultiplyRecursive(A12 B22)

C12);

squareMatrixAdd(squareMatrixMultiplyRecursive(A21 B11) squareMatrixMultiplyRecursive(A22 B21)

C21);

squareMatrixAdd(squareMatrixMultiplyRecursive(A21 B12) squareMatrixMultiplyRecursive(A22 B22)

C22);

copyFromMatrixArray(C 0 0 n/2 n/2 C11);

copyFromMatrixArray(C 0 n/2 n/2 n/2 C12);

copyFromMatrixArray(C n/2 0 n/2 n/2 C21);

copyFromMatrixArray(C n/2 n/2 n/2 n/2 C22);

}

return C;

}

public static int[][] strassenMatrixMultiplyRecursive(int A[][] int B[][]) {

int n = A.length;

int C[][] = new int[n][n];

if (n == 1) {

C[0][0] = A[0][0] * B[0][0];

} else {

int A11[][] A12[][] A21[][] A22[][];

int B11[][] B12[][] B21[][] B22[][];

int C11[][] C12[][] C21[][] C22[][];

int S1[][] S2[][] S3[][] S4[][] S5[][] S6[][] S7[][] S8[][] S9[][] S10[][];

int P1[][] P2[][] P3[][] P4[][] P5[][] P6[][] P7[][];

A11 = new int[n/2][n/2];A12 = new int[n/2][n/2];A21 = new int[n/2][n/2];A22 = new int[n/2][n/2];

copyToMatrixArray(A 0 0 n/2 n/2 A11);

copyToMatrixArray(A 0 n/2 n/2 n/2 A12);

copyToMatrixArray(A n/2 0 n/2 n/2 A21);

copyToMatrixArray(A n/2 n/2 n/2 n/2 A22);

B11 = new int[n/2][n/2];B12 = new int[n/2][n/2];B21 = new int[n/2][n/2];B22 = new int[n/2][n/2];

copyToMatrixArray(B 0 0 n/2 n/2 B11);

copyToMatrixArray(B 0 n/2 n/2 n/2 B12);

copyToMatrixArray(B n/2 0 n/2 n/2 B21);

copyToMatrixArray(B n/2 n/2 n/2 n/2 B22);

S1 = new int[n/2][n/2];S2 = new int[n/2][n/2];S3 = new int[n/2][n/2];S4 = new int[n/2][n/2];

S5 = new int[n/2][n/2];S6 = new int[n/2][n/2];S7 = new int[n/2][n/2];S8 = new int[n/2][n/2];

S9 = new int[n/2][n/2];S10 = new int[n/2][n/2];

squareMatrixSub(B12 B22 S1);squareMatrixAdd(A11 A12 S2);squareMatrixAdd(A21 A22 S3);

squareMatrixSub(B21 B11 S4);squareMatrixAdd(A11 A22 S5);squareMatrixAdd(B11 B22 S6);

squareMatrixSub(A12 A22 S7);squareMatrixAdd(B21 B22 S8);squareMatrixSub(A11 A21 S9);

squareMatrixAdd(B11 B12 S10);

P1 = new int[n/2][n/2];P2 = new int[n/2][n/2];P3 = new int[n/2][n/2];P4 = new int[n/2][n/2];

P5 = new int[n/2][n/2];P6 = new int[n/2][n/2];P7 = new int[n/2][n/2];

P1 = strassenMatrixMultiplyRecursive(A11 S1);

P2 = strassenMatrixMultiplyRecursive(S2 B22);

P3 = strassenMatrixMultiplyRecursive(S3 B11);

P4 = strassenMatrixMultiplyRecursive(A22 S4);

P5 = strassenMatrixMultiplyRecursive(S5 S6);

P6 = strassenMatrixMultiplyRecursive(S7 S8);

P7 = strassenMatrixMultiplyRecursive(S9 S10);

C11 = new int[n/2][n/2];C12 = new int[n/2][n/2];C21 = new int[n/2][n/2];C22 = new int[n/2][n/2];

int temp[][] = new int[n/2][n/2];

squareMatrixAdd(P5 P4 temp);

squareMatrixSub(temp P2 temp);

squareMatrixAdd(temp P6 C11);

squareMatrixAdd(P1 P2 C12);

squareMatrixAdd(P3 P4 C21);

squareMatrixAdd(P5 P1 temp);

squareMatrixSub(temp P3 temp);

squareMatrixSub(temp P7 C22);

copyFromMatrixArray(C 0 0 n/2 n/2 C11);

copyFromMatrixArray(C 0 n/2 n/2 n/2 C12);

copyFromMatrixArray(C n/2 0 n/2 n/2 C21);

copyFromMatrixArray(C n/2 n/2 n/2 n/2 C22);

}

return C;

}

public static int sMatrixA[][] = new int[][] {

{1 2 3 4 5 6 7 8}

{1 2 3 4 5 6 7 8}

{1 2 3 4 5 6 7 8}

{1 2 3 4 5 6 7 8}

{1 2 3 4 5 6 7 8}

{1 2 3 4 5 6 7 8}

{1 2 3 4 5 6 7 8}

{1 2 3 4 5 6 7 8}

};

public static int sMatrixB[][] = new int[][] {

{5 6 7 8 1 2 3 4}

{5 6 7 8 1 2 3 4}

{5 6 7 8 1 2 3 4}

{5 6 7 8 1 2 3 4}

{5 6 7 8 1 2 3 4}

{5 6 7 8 1 2 3 4}

{5 6 7 8 1 2 3 4}

{5 6 7 8 1 2 3 4}

};

public static void main(String[] args) {

System.out.println("普通矩阵乘法");

SquareMatrixMultiply(sMatrixA sMatrixB);

System.out.println("\n递归矩阵乘法");

int C[][] = squareMatrixMultiplyRecursive(sMatrixA sMatrixB);

displaySquare(C);

System.out.println("\n Strassen 递归矩阵乘法");

C = strassenMatrixMultiplyRecursive(sMatrixA sMatrixB);

displaySquare(C);

}

}

矩阵算法方法(算法之2矩阵乘法的Strassen算法)(16)

注:凡属于本公众号内容,未经允许不得私自转载,否则将依法追究侵权责任。

猜您喜欢: