雷达探测隐身飞机前瞻(红外隐身与反隐身的技术进展)
雷达探测隐身飞机前瞻(红外隐身与反隐身的技术进展)而从侧面看,羽流的信号强度最大。它可以在飞机后面延伸超过15m(50ft),但其辐射主要集中在前面的1.37m(4.5ft)。随传感器投影面积增加,机身也成为了主要的信号贡献者,机头、机翼前缘和进气口都是主要部位。因为羽流沿喷管轴线径向扩张,所以尽管温度迅速降低,羽流仍然可见。在机身后段的四分之一处,热部件仍然是红外信号的主要贡献者。排气羽流也是如此,但并不像人们所想象的那么明显。与固体不同,气体分子自由振荡,这使得它们在特定的“谱线”下发射和吸收能量。由于碳氢化合物燃烧的主要产物(水蒸气和二氧化碳)也在大气中,所以吸收的羽流的散热量比其他的信号组件多。然而,排出气体的高温高压使二氧化碳的吸收线增加到4.2µm,会在4.15µm和4.45µm处产生尖峰。但大气依然会使它们衰减,特别是在低海拔地区。总体IR信号水平目标的总体IR信号水平(IRSL)是其所有部分的信号总和。每个组件的信号取决于
文/Dan Katz
隐身飞机的出现推动了反隐身技术的发展。目前反隐身的一种方法是在电磁(EM)频谱方面将传统的雷达频率降低到L、UHF、VHF甚至HF频段。另一种有希望的方法是将频段升至更高的红外(IR)频段,被动传感器可以在这个频段探测到由每个物体发出的热辐射。未来随着红外(IR)导弹、红外搜索和跟踪(IRST)系统能力的提高,真正的低可观测性将不仅需要在雷达多频段隐身,而且需要在IR频段实现隐身。
红外频段在技术上可以从300GHz的极高频(EHF)无线电频段顶部一直延伸到从430THz开始的可见光频段,波长范围从1mm到0.77µm。然而,可用光谱目前只限于0.77~14µm,它进一步分为三个子频段:0.7~1.5µm的近红外(NIR);1.5~6.0µm的中波红外(MWIR)和6~14µm的长波红外(LWIR)。确切的界限会有所不同,可以在0.7~3.0µm范围内包括一个短波长红外(SWIR)区域。
大气透射的红外波长
总体IR信号水平
目标的总体IR信号水平(IRSL)是其所有部分的信号总和。每个组件的信号取决于其辐射度与背景和路径之间的对比度、在传感器上的投影面积、发射波长的大气衰减程度(与对比度和投影面积共同决定了组件的“对比度强度”)以及传感器对这些波长的响应能力。因此,飞机的IRSL的主要决定因素取决于视角和子频段。
在MWIR段,飞机后部的IRSL最大,前面的最小。来自后端的红外信号主要由发动机的“热部件”,即喷管中心体、内壁和低压涡轮的后端面造成,这些零组件的温度在450~700°C之间,也就是喷管和排气羽流的温度。这也是几乎所有红外制导的防空导弹都工作在MWIR段的原因。
在机身后段的四分之一处,热部件仍然是红外信号的主要贡献者。排气羽流也是如此,但并不像人们所想象的那么明显。与固体不同,气体分子自由振荡,这使得它们在特定的“谱线”下发射和吸收能量。由于碳氢化合物燃烧的主要产物(水蒸气和二氧化碳)也在大气中,所以吸收的羽流的散热量比其他的信号组件多。然而,排出气体的高温高压使二氧化碳的吸收线增加到4.2µm,会在4.15µm和4.45µm处产生尖峰。但大气依然会使它们衰减,特别是在低海拔地区。
而从侧面看,羽流的信号强度最大。它可以在飞机后面延伸超过15m(50ft),但其辐射主要集中在前面的1.37m(4.5ft)。随传感器投影面积增加,机身也成为了主要的信号贡献者,机头、机翼前缘和进气口都是主要部位。因为羽流沿喷管轴线径向扩张,所以尽管温度迅速降低,羽流仍然可见。
在LWIR段,最大的问题是机身,由于前部的气动力加热和后部的发动机加热,机身温度可能会达到30°C~230°C。尽管辐射比尾喷管少,但后机身的投影面积却有其10倍大。随着高度的降低,地照光的影响也在扩大,反射的地照光和天空散射光在LWIR段也是重要项,特别是对于低辐射面和从上方或下方观察的飞机。在近红外段(NIR),反射的阳光是大多数角度下IRSL的主要驱动力。而羽流在LWIR或NIR段几乎不起作用。
IRSL受速度的影响很大。在发动机处于非加力状态时,排气管和后机身通常具有比羽流更大的信号辐射率。加力状态下,加力燃烧室极大地扩大了羽流,排气管的温度翻倍,后机身温度大约升高70°C,这些影响可以使IRSL值增大近10倍。
机身,特别是其机翼前缘,也因高速而快速升温。在9144m(30000ft)的高度以Ma0.8飞行时,蒙皮温度可能会比环境温度高11%,但是在速度达到Ma1.6时,蒙皮的温度可以比环境温度高44%,高出探测范围的两倍。也就是说当一架飞机以超声速飞行时,会产生一个压缩、加热空气的“马赫锥”,它可以将此区域与背景的对比度增加一个数量级,超过探测范围的两倍。
红外发射率随温度的变化
目前还没有关于现代作战飞机的IRSL公开资料,而且考虑到所有的因素,IRSL也并没有像雷达截面积(RCS)这样具备可探测性的简单度量标准。为了进行基准测试,苏霍伊公司认为其苏-35上的OLS-35MWIRIRST可以从后方90km(56mile)到前方35km的范围内侦察到一架苏-30尺寸的目标。但是苏-30是一款大型双发飞机,无法有效地抑制IR信号,理论上,距离后方约10km的位置,红外制导的地空导弹就能将其作为目标捕获。
飞机的IR抑制通常从发动机开始。热端部件的信号最容易用屏蔽抑制,主要通过增强排气与空气的混合来缩小羽流,从而更快地降低温度和压力。常见的技术包括增加发动机的涵道比,将温度更低的空气、水蒸气或碳颗粒注入排气中。另一种方法是增加具有V形、扇形或波纹状密封件的喷管,促进羽流的径向扩散并与空气混合,V形的喷管后缘还能产生脱体涡以加速混合。这些增加的部件也能够减少噪声排放,这就是为什么新型客机的发动机配有V形排气喷管。
使用低发射率材料可以减少蒙皮的发射。理论研究表明,将蒙皮的发射率从1降低到0,可以使探测范围减半。具有不同折射率的分层材料可以使表面仅反射特定的波长,并在其他波长发射,例如,那些具有更大的大气衰减的波长。当然,隐身飞机上的表面涂层也必须考虑其雷达效应。