递推迭代数列例题(知识打卡3Mathematica)
递推迭代数列例题(知识打卡3Mathematica)This is the LearingYard Academy!Dear you 今天小编为大家带来Mathematica——常微分方程、拉氏变换与级数实验欢迎您的用心访问!Share interest spread happiness increase knowledge and leave beautiful.
分享兴趣,传播快乐,
增长见闻,留下美好。
亲爱的您,
这里是LearingYard学苑!
今天小编为大家带来Mathematica——常微分方程、拉氏变换与级数实验
欢迎您的用心访问!
Share interest spread happiness increase knowledge and leave beautiful.
Dear you
This is the LearingYard Academy!
Today the editor brings you Mathematica for partial derivative and multivariate function for extreme value.
Welcome your visit!
常微分方程
Ordinary differential equation
1.概念
微分方程是为解决某些不能直接写出函数关系的问题而产生的一种数学概念,它能够表示一个或几个含有未知函数的导数的关系式,我们再通过微分方程和给定条件就可以求出未知函数。
常微分方程则是含有未知一元函数的导数的微分方程。
1.Concept
Differential equation is a mathematical concept produced to solve some problems that can not write the function relationship directly.
It can represent one or several relations containing derivatives of unknown functions.
We can find the unknown functions through differential equations and given conditions.
Ordinary differential equations are differential equations containing derivatives of unknown univariate functions.
2.求解过程
在求解微分程时,我们使用DSolve[]函数,具体形式有以下几种,本文暂时只学习常微分方程,不考虑偏微分方程:
2. Solution process
When solving the differential process we use the dsolve [] function in the following forms.
For the time being this paper only studies the ordinary differential equation without considering the partial differential equation:
接下来,我们使用Mathematica进行一下简单的操作演练,题目如下:
Next let's use Mathematica to perform a simple operation drill. The topics are as follows:
拉氏变换
Laplace transform
拉氏变换又叫拉普拉斯变换,是工程数学中一种常用的积分变换,它属于线性变换,可以将一个具有实数参数a(>=0)的函数转换为一个具有复数参数i的函数。
Laplace transform also known as Laplace transform is a common integral transform in engineering mathematics. It belongs to linear transform which can convert a function with real parameter a (> = 0) into a function with complex parameter I.
接下来,我们使用Mathematica进行一下简单的操作演练,题目如下:
Next let's use Mathematica to perform a simple operation drill. The topics are as follows:
级数实验
Series experiment
首先,理解什么是级数?级数就是将数列的项依次用加号连接起来的函数。这里列举部分级数有正项级数、交错级数、幂级数、傅里叶级数。级数对于研究函数来说十分重要。
这里我们主要说明一下幂级数。生成函数的幂级数,具体使用的函数类型如下图所示:
First understand what is series?
A series is a function that connects the terms of a sequence with a plus sign in turn. Some series listed here include positive series staggered series power series and Fourier series. Series is very important for the study of functions.
Here we mainly explain the power series. Generate the power series of the function. The specific function types are shown in the figure below:
接下来,我们使用Mathematica进行一下简单的操作演练,题目如下:
Next let's use Mathematica to perform a simple operation drill. The topics are as follows:
今天的分享就到这里了。
如果您对今天的文章有独特的想法,
欢迎给我们留言,
让我们相约明天,
祝您今天过得开心快乐!
That's it for today's sharing.
If you have unique ideas about today’s article please leave us a message
Let us meet tomorrow
I wish you a happy day today!
参考资料:谷歌翻译、百度百科、Mathematica软件.
本文由LearningYard学苑原创,如有侵权请沟通。