高中数学判断函数单调性和奇偶性(高一数学函数奇偶性知识点及练习题)
高中数学判断函数单调性和奇偶性(高一数学函数奇偶性知识点及练习题)(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。说明:①奇、偶性是函数的整体性质,对整个定义域而言
1.定义
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义
2.奇偶函数图像的特征:
定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y)
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数在某一区间上单调递增,则在它的对称区间上单调递减。
3.奇偶函数运算
(1).两个偶函数相加所得的和为偶函数.
(2).两个奇函数相加所得的和为奇函数.
(3).一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.
(4).两个偶函数相乘所得的积为偶函数.
(5).两个奇函数相乘所得的积为偶函数.
(6).一个偶函数与一个奇函数相乘所得的积为奇函数.
数学函数奇偶性练习题及答案解析
1.下列命题中,真命题是( )
A.函数y=1x是奇函数,且在定义域内为减函数
B.函数y=x3(x-1)0是奇函数,且在定义域内为增函数
C.函数y=x2是偶函数,且在(-3 0)上为减函数
D.函数y=ax2 c(ac≠0)是偶函数,且在(0 2)上为增函数
解析:选C.选项A中,y=1x在定义域内不具有单调性;B中,函数的定义域不关于原点对称;D中,当a<0时,y=ax2 c(ac≠0)在(0 2)上为减函数,故选C.
2.奇函数f(x)在区间[3 7]上是增函数,在区间[3 6]上的最大值为8,最小值为-1,则2f(-6) f(-3)的值为( )
A.10 B.-10
C.-15 D.15
解析:选C.f(x)在[3 6]上为增函数,f(x)max=f(6)=8,f(x)min=f(3)=-1.∴2f(-6) f(-3)=-2f(6)-f(3)=-2×8 1=-15.
3.f(x)=x3 1x的图象关于( )
A.原点对称 B.y轴对称
C.y=x对称 D.y=-x对称
解析:选A.x≠0,f(-x)=(-x)3 1-x=-f(x),f(x)为奇函数,关于原点对称.
4.如果定义在区间[3-a 5]上的函数f(x)为奇函数,那么a=________.
解析:∵f(x)是[3-a 5]上的奇函数,
∴区间[3-a 5]关于原点对称,
∴3-a=-5,a=8.
答案:8
1.函数f(x)=x的奇偶性为( )
A.奇函数 B.偶函数
C.既是奇函数又是偶函数 D.非奇非偶函数
解析:选D.定义域为{x|x≥0},不关于原点对称.
2.下列函数为偶函数的是( )
A.f(x)=|x| x B.f(x)=x2 1x
C.f(x)=x2 x D.f(x)=|x|x2
解析:选D.只有D符合偶函数定义.
3.设f(x)是R上的任意函数,则下列叙述正确的是( )
A.f(x)f(-x)是奇函数
B.f(x)|f(-x)|是奇函数
C.f(x)-f(-x)是偶函数
D.f(x) f(-x)是偶函数
解析:选D.设F(x)=f(x)f(-x)
则F(-x)=F(x)为偶函数.
设G(x)=f(x)|f(-x)|,
则G(-x)=f(-x)|f(x)|.
∴G(x)与G(-x)关系不定.
设M(x)=f(x)-f(-x),
∴M(-x)=f(-x)-f(x)=-M(x)为奇函数.
设N(x)=f(x) f(-x),则N(-x)=f(-x) f(x).
N(x)为偶函数.
4.已知函数f(x)=ax2 bx c(a≠0)是偶函数,那么g(x)=ax3 bx2 cx( )
A.是奇函数
B.是偶函数
C.既是奇函数又是偶函数
D.是非奇非偶函数
解析:选A.g(x)=x(ax2 bx c)=xf(x),g(-x)=-x•f(-x)=-x•f(x)=-g(x),所以g(x)=ax3 bx2 cx是奇函数;因为g(x)-g(-x)=2ax3 2cx不恒等于0,所以g(-x)=g(x)不恒成立.故g(x)不是偶函数.
5.奇函数y=f(x)(x∈R)的图象必过点( )
A.(a,f(-a)) B.(-a,f(a))
C.(-a,-f(a)) D.(a,f(1a))
解析:选C.∵f(x)是奇函数,
∴f(-a)=-f(a),
即自变量取-a时,函数值为-f(a),
故图象必过点(-a,-f(a)).
内容整理自网络,如有侵权,请联系我们删除。