python的机器人工具包:Python环境下基于机器学习的往复式压缩机故障识别
python的机器人工具包:Python环境下基于机器学习的往复式压缩机故障识别Classifier: SVC- rbf Gamma= 0.003211151769260453 PenaltyPrameter= 3.2794598503610994 Test Acuuracy= 0.9583333333333334Classifier: SVC- poly Gamma= 0.02472261261696812 PenaltyPrameter= 8.084311259878596 Test Acuuracy= 0.875import time import pandas as pd import numpy as np import matplotlib.pyplot as plt MaxExpNo=10 counter=-1 #标签 labels=['Bearing' 'Flywheel' 'Healt
本项目使用声信号检测往复式压缩机的 7 种故障,分别为出口阀泄漏Leakage Outlet Valve(LOV) 入口阀泄露Leakage Inlet Valve(LIV),止逆阀泄露Non-Return Valve(NRV),轴承损伤Bearing,惯性轮损伤Flywheel,活塞损伤Piston,皮带损伤Riderbelt和健康状态。经过特征提取后,利用各种机器学习算法对往复式压缩机故障进行分类。
所测得的声信号如下
以Flywheel为例
接下来开始步入正题,由于代码包含众多模块,为了避免篇幅过长,只写主函数。提取的特征可以选择维数是否约简,分类器也可选择是否进行参数优化(粒子群算法,pip install pyswarm),代码必要的标注都有了,也比较容易看懂。
import time
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
MaxExpNo=10
counter=-1
#标签
labels=['Bearing' 'Flywheel' 'Healthy' 'LIV' 'LOV' 'NRV' 'Piston' 'Riderbelt']
import PrimaryStatFeatures #特征提取模块
import FFT_Module #FFT变换
#所要提取的特征
data_columns_PrimaryStatFeatures=['Mean' 'Min' 'Max' 'StdDv' 'RMS' 'Skewness' 'Kurtosis' 'CrestFactor' 'ShapeFactor']
data_columns_Target=['Fault']
Faults={labels[0]:int(0) labels[1]:int(1) labels[2]:int(2) labels[3]:int(3) labels[4]:int(4) labels[5]:int(5) labels[6]:int(6) labels[7]:int(7)}
for label in labels:
for ExpNo in range(1 MaxExpNo 1):
counter =1
file='Data\\' label '\\preprocess_Reading' str(ExpNo) '.txt'
X=np.loadtxt(file delimiter=' ')
if (counter==0): print('Lading files: ' str(counter/(len(labels)*MaxExpNo)*100) '% completed')
StatFeatures=PrimaryStatFeatures.PrimaryFeatureExtractor(X)
FFT_Features data_columns_FFT_Features=FFT_Module.FFT_BasedFeatures(X)
data_columns=data_columns_PrimaryStatFeatures data_columns_FFT_Features data_columns_Target
if (label==labels[0] and ExpNo==1): data=pd.DataFrame(columns=data_columns)
StatFeatures[0].extend(FFT_Features)
StatFeatures[0].extend([Faults[label]])
df_temp=pd.DataFrame(StatFeatures index=[counter] columns=data_columns)
data=data.append(df_temp)
input_data=data.drop(columns=['Fault'])
#数据标准化处理
#参考: http://benalexkeen.com/feature-scaling-with-scikit-learn/
from sklearn import preprocessing
normalization_status='RobustScaler'
''' Choices:
1. Normalization
2. StandardScaler
3. MinMaxScaler
4. RobustScaler
5. Normalizer
6. WithoutNormalization '''
input_data_columns=data_columns_PrimaryStatFeatures data_columns_FFT_Features
if (normalization_status=='Normalization'):
data_array=preprocessing.normalize(input_data norm='l2' axis=0)
input_data=pd.DataFrame(data_array columns=input_data_columns)
elif (normalization_status=='StandardScaler'):
scaler = preprocessing.StandardScaler()
scaled_df = scaler.fit_transform(input_data)
input_data = pd.DataFrame(scaled_df columns=input_data_columns)
elif (normalization_status=='MinMaxScaler'):
scaler = preprocessing.MinMaxScaler()
scaled_df = scaler.fit_transform(input_data)
input_data = pd.DataFrame(scaled_df columns=input_data_columns)
elif (normalization_status=='RobustScaler'):
scaler = preprocessing.RobustScaler()
scaled_df = scaler.fit_transform(input_data)
input_data = pd.DataFrame(scaled_df columns=input_data_columns)
elif (normalization_status=='Normalizer'):
scaler = preprocessing.Normalizer()
scaled_df = scaler.fit_transform(input_data)
input_data = pd.DataFrame(scaled_df columns=input_data_columns)
elif (normalization_status=='WithoutNormalization'):
print ('No normalization is required')
target_data=pd.DataFrame(data['Fault'] columns=['Fault'] dtype=int)
DimReductionStatus=False
if (DimReductionStatus==True):
for nComponents in range(1 110):
#降维
#主成分分析
from sklearn import decomposition
pca = decomposition.PCA(n_components=nComponents)
pca.fit(input_data)
input_data_reduced = pca.transform(input_data)
#训练集和测试集划分
from sklearn.model_selection import train_test_split
x_train x_test y_train y_test=train_test_split(input_data_reduced target_data test_size=0.3 random_state=42 stratify=target_data)
#使用 KNN(K 最近邻)训练
import KNN_Classifier
test_accuracy_max=KNN_Classifier.KNNClassifier(x_train x_test y_train y_test)
plt.figure(10)
plt.scatter(nComponents test_accuracy_max)
plt.xlabel('Number of utilized components based on PCA')
plt.ylabel('Test Accuracy')
#使用 SVC(支持向量分类器)进行训练
import SVC_Classifier
test_accuracy_max=SVC_Classifier.SVCClassifier(x_train x_test y_train y_test)
plt.figure(11)
plt.scatter(nComponents test_accuracy_max)
else:
from sklearn.model_selection import train_test_split
x_train x_test y_train y_test=train_test_split(input_data target_data test_size=0.3 random_state=42 stratify=target_data)
#使用决策树进行训练
import DT_Classifier
DT_Classifier.DTClassifier(x_train x_test y_train y_test)
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import rbf
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier AdaBoostClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
#写入最佳分类器参数
file1 = open('Optimized Parameters for Classifiers.txt' 'w')
print('\nThis file contains the output optimized parameters for different classifiers\n\n\n' file=file1)
#分类器参数优化
#*************************************
SVMOptStatus=True
KNNOptStatus=True
MLPOptStatus=True
DTOptStatus=True
import CLFOptimizer
#pip install pyswarm
#优化 SVC 参数
if (SVMOptStatus==True):
SVM_kernels = ['linear' 'poly' 'rbf' 'sigmoid']
for KernelType in SVM_kernels:
print('\n\nstage: Optimizing SVC:' KernelType)
SVCParams_opt SVCAccuracy_opt=CLFOptimizer.SVCOPT(KernelType x_train x_test y_train y_test)
print('\nClassifier: SVC-' KernelType ' Gamma=' SVCParams_opt[0] ' PenaltyPrameter=' SVCParams_opt[1] ' Test Acuuracy=' SVCAccuracy_opt file=file1)
#优化 KNN 参数
if (KNNOptStatus==True):
print('\n\nstage: Optimizing KNN')
KNNParams_opt KNNAccuracy_opt=CLFOptimizer.KNNOPT(x_train x_test y_train y_test)
print('\nClassifier: KNN n_neighbors=' KNNParams_opt ' Test Acuuracy=' KNNAccuracy_opt file=file1)
#优化 MLP 分类器
if (MLPOptStatus==True):
print('\n\nstage: Optimizing MLP')
MLPParams_opt MLPAccuracy_opt=CLFOptimizer.MLPOPT(x_train x_test y_train y_test)
print('\nClassifier: MLP hidden_layer_sizes=(' MLPParams_opt[0] ' ' MLPParams_opt[1] ' ' MLPParams_opt[2] ') Test Acuuracy=' MLPAccuracy_opt file=file1)
#优化决策树分类器
if (DTOptStatus==True):
print('\n\nstage: Optimizing Decision Tree')
DTParams_opt DTAccuracy_opt=CLFOptimizer.DTOPT(x_train x_test y_train y_test)
print('\nClassifier: Decision Tree max_depth=' DTParams_opt[0] ' min_samples_split=' DTParams_opt[1] ' min_samples_leaf=' DTParams_opt[2] ' Test Acuuracy=' DTAccuracy_opt file=file1)
file1.close()
#生成分类器名称及其配置
classifiers=[]
CLFnames=[]
CLFnames= CLFnames ["SVC-linear" "K-Nearest Neighbors" "Multi-Layer Perceptron"
"Decision Tree" "Random Forest" "Gaussian Process" "AdaBoost"
"Naive Bayes" "QDA"]
#classifiers=classifiers [
# SVC(kernel='linear' gamma=1.785 C=3.463)
# KNeighborsClassifier(n_neighbors=3)
# MLPClassifier(hidden_layer_sizes=(28 34 80 ) alpha=1)
# DecisionTreeClassifier()
# RandomForestClassifier()
# GaussianProcessClassifier(1.0 * RBF(1.0))
# AdaBoostClassifier()
# GaussianNB()
# QuadraticDiscriminantAnalysis()]
classifiers=classifiers [
SVC()
KNeighborsClassifier()
MLPClassifier()
DecisionTreeClassifier()
RandomForestClassifier()
GaussianProcessClassifier()
AdaBoostClassifier(DecisionTreeClassifier() n_estimators=1000 learning_rate=1)
GaussianNB()
QuadraticDiscriminantAnalysis()]
#将分类结果写入文件
f = open('ClassificationResults.txt' 'w')
print('\nThis file contains an overall comparison of different classifiers performance\n\n\n' file=f)
import ClassificationModule
ClassificationModule.Classifiers(CLFnames classifiers x_train x_test y_train y_test)
分类器优化参数结果
This file contains the output optimized parameters for different classifiers
Classifier: SVC- linear Gamma= 1.61614372336136 PenaltyPrameter= 6.455613795161285 Test Acuuracy= 1.0
Classifier: SVC- poly Gamma= 0.02472261261696812 PenaltyPrameter= 8.084311259878596 Test Acuuracy= 0.875
Classifier: SVC- rbf Gamma= 0.003211151769260453 PenaltyPrameter= 3.2794598503610994 Test Acuuracy= 0.9583333333333334
Classifier: SVC- sigmoid Gamma= 0.001 PenaltyPrameter= 9.44412249946835 Test Acuuracy= 1.0
Classifier: KNN n_neighbors= 3 Test Acuuracy= 0.875
Classifier: MLP hidden_layer_sizes=( 19.0 97.0 14.0 ) Test Acuuracy= 1.0
Classifier: Decision Tree max_depth= 2121.0 min_samples_split= 6.0 min_samples_leaf= 4.0 Test Acuuracy= 1.0
Training accuracy for SVC-linear is: 0.9642857142857143 and Prediction accuracy is: 0.875
Training accuracy for K-Nearest Neighbors is: 0.8928571428571429 and Prediction accuracy is: 0.7916666666666666
分类结果
Training accuracy for Multi-Layer Perceptron is: 1.0 and Prediction accuracy is: 0.9583333333333334
Training accuracy for Decision Tree is: 1.0 and Prediction accuracy is: 0.7916666666666666
Training accuracy for Random Forest is: 1.0 and Prediction accuracy is: 0.9583333333333334
Training accuracy for Gaussian Process is: 1.0 and Prediction accuracy is: 0.8333333333333334
Training accuracy for AdaBoost is: 1.0 and Prediction accuracy is: 0.9583333333333334
Training accuracy for Naive Bayes is: 1.0 and Prediction accuracy is: 0.9166666666666666
Training accuracy for QDA is: 1.0 and Prediction accuracy is: 0.3333333333333333
实际上,工业上大部分还是基于频谱或者3西格玛准则之类的方法对部件进行监测诊断,简单方便可解释性强。
完整的数据及代码见如下链接
https://mianbaoduo.com/o/bread/Y5eclpxr