进制怎么算最简单的例子?从多一秒谈起的进位制
进制怎么算最简单的例子?从多一秒谈起的进位制今天我们只谈谈“进位制”,从我们熟悉的“十进制”谈起:正是因为熟悉,我们往往会忽略十进制的本由,我们只是浅显的知道对于“3475”这个数来说,“3”在千位,代表3000;“4”在百位,代表400;“7”在十位,代表70;“5”在个位,代表5。由于在罗马数字记数法中,数码的值不随其位置的变化而变化,例如数码“X”不管放在哪一位,其值均为“10”,再加上没有表示“〇”的符号,致使罗马数字记数法十分不便,用它计算则更麻烦。因此这种记数法已被淘汰,而今只是在一些钟表上,或作为编号还可以见到罗马数码的痕迹。“为了想这一秒用来干啥,我浪费了整整一个小时。”……2017年1月1号,我想每个人的朋友圈或多或少会有这样的调侃吧!究其原因,是来源于“润秒”。2016年多出了“1秒”,这多出的“1秒”将加在格林尼治时间12月31日23时59分后,通过增加闰秒实现。由于北京处于东八时区,所以将在2017年1月1日
“今天早上像往常时间8:00醒来,感觉自己好幸福,多睡了一秒。”
“如果多出一秒,我就多了一秒和父母、朋友在一起的时间,那我就无比满足了。”
“多一秒,用来想她。”
“这一秒要干什么?让我想想?嗯,好像已经过了。”
“为了想这一秒用来干啥,我浪费了整整一个小时。”
……
2017年1月1号,我想每个人的朋友圈或多或少会有这样的调侃吧!究其原因,是来源于“润秒”。2016年多出了“1秒”,这多出的“1秒”将加在格林尼治时间12月31日23时59分后,通过增加闰秒实现。由于北京处于东八时区,所以将在2017年1月1日7时59分59秒后面增加1秒,届时会出现7时59分60秒的特殊现象。
由于在罗马数字记数法中,数码的值不随其位置的变化而变化,例如数码“X”不管放在哪一位,其值均为“10”,再加上没有表示“〇”的符号,致使罗马数字记数法十分不便,用它计算则更麻烦。因此这种记数法已被淘汰,而今只是在一些钟表上,或作为编号还可以见到罗马数码的痕迹。
今天我们只谈谈“进位制”,从我们熟悉的“十进制”谈起:正是因为熟悉,我们往往会忽略十进制的本由,我们只是浅显的知道对于“3475”这个数来说,“3”在千位,代表3000;“4”在百位,代表400;“7”在十位,代表70;“5”在个位,代表5。
当然,在计数中,我们除了十进制,还有其他的进制,譬如:
二进制:观察我国古代的《六十四卦次序图》,不难看出它和近代数学的二进制相同。实际上德国数学家莱布尼兹就是参照我国的先天八卦学说,用0,1两个数字符号来计数,发明了“二进制”。二进制在当今正发挥着巨大的作用,可以说没有二进制,就没有电子计算机的发明。
五进制:五进制就是逢5进1,日常生活中的算盘就是例子。算盘是我国利用阴阳五行学说发明的。市制单位中的1钱等于国际单位的5克,也可以看作是五进制的应用,时钟,手表上面共12等分,每等分数值为5,其实也暗示着五进制的应用。
六十进制:六十进制最典型的应用就是计时上的应用,1小时等于60分钟,一分钟等于六十秒钟。数学上的角度制,采用的也是六十进制,1度等于60分,1分等于60秒(1°=60′=3600″),我国古代是用干支来计算日子。10天干与12地支相配正好60为一周期,用来纪年、纪月、纪日、纪时。
十二进制:1年等于12个月;一昼夜等于12个时辰(时段);1打等于12。
十五进制:1刻钟等于15分钟;1公顷等于15市亩;1节气等于15天。
三进制:1季节等于3个月;1月等于3锂;1米等于3市尺。
四进制:1年等于4季度;1小时等于4刻钟。
七进制:1星期等于7天。
二十四进制:1昼夜等于24小时;1年等于24节气。
三十进制:1月等于30天。
……等等。
我们以上十进制的思路来研究“k”进制,就会轻松些,我们不妨定义为七进制,也就是说每七个进位,打捆、成箱、装车等。
如果我们把以上的方法用竖式列出:
这也就是我们教材中介绍的“除k取余法”。
我们可以借助于“十进制”这一熟悉的计数作为媒介,完成进位制之间的转换,把“k进制”的数转化为十进制,再通过除k取余法,转变成别的进制。
对于同一进位制的数,我们可以仿照十进制的四则运算进行运算,不同的是k进制中要遵循“逢k进一”、“借1当k”的规则。
利用进位制解决一些联赛奥赛问题,也会变得非常简单。
譬如我们来看几道:
通过上述例题,我们可以看出,有时候利用进位制可以巧妙地解答一些数学问题,做到事倍功半的效果。