函数奇偶性的判定方法:函数奇偶性的判定方法和相关知识总结
函数奇偶性的判定方法:函数奇偶性的判定方法和相关知识总结奇函数奇函数的图象关于原点成中心对称,偶函数的图像关于y轴对称。 2.按奇偶性分类,函数可分为四类:奇函数非偶函数、偶函数非奇函数、非奇非偶函数、亦奇亦偶函数. 3、奇偶函数的图象:
一、函数奇偶性的概念
1. 一般地,对于函数f(x),如果对于函数定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
一般地,对于函数f(x),如果对于函数定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
注:奇偶性是针对整个定义域而言的,而单调性是针对定义域内的某个区间而言的,定义域关于原点对称是函数具有奇偶性的必要条件。
2.按奇偶性分类,函数可分为四类:
奇函数非偶函数、偶函数非奇函数、非奇非偶函数、亦奇亦偶函数.
3、奇偶函数的图象:
奇函数的图象关于原点成中心对称,偶函数的图像关于y轴对称。
奇函数
偶函数
4、函数奇偶性的性质:
①具有奇偶性的函数,其定义域关于原点对称
②若f(x)是奇函数,且x在0处有定义,则f(0)=0。
③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同,最值相反;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反,最值相同
④任意定义在R上的函数f(x)都可以唯一地表示成一个奇函数与一个偶函数的和。
⑤如果有函数g(x)和f(x),则他们的复合函数f[g(x)]的定义域是关于原点对称的。当u=g(x),y=f(u)都是奇函数时,y=f[g(x)]是奇函数;当u=g(x),y=f(u)都是偶函数或者一奇一偶时,y= f[g(x)]是偶函数。
复合函数的奇偶性特点是:“内偶则偶,内奇同外”.
5.几个与函数奇偶性相关的结论:
①奇函数 奇函数=奇函数;偶函数 偶函数=偶函数;
②奇函数×奇函数=偶函数;奇函数×偶函数=奇函数。
二、判断函数奇偶性的步骤:
①、求f(x)定义域,判断定义域是否关于原点对称;不对称则是非奇非偶函数,对称转下一步
②、化简f(x) 再求f(-x) 比较两者的关系
③、根据定义定义得出结论。
三、抽象函数奇偶性的判断
方法:判断抽象函数的奇偶性常用赋值法。在已知抽象函数关系中凑出f(-x) f(x)或者f(-x)-f(x).一般先去探求f(0)的值(或者f(1)、f(-1)的值),再令y=-x 从而产生f(-x)和f(x)的关系。