快捷搜索:  汽车  科技

python遗传算法多目标规划(易部署的Python遗传算法库)

python遗传算法多目标规划(易部署的Python遗传算法库)best_x best_y = ga.run() print('best_x:' best_x '\n' 'best_y:' best_y) 现在 udf 支持遗传算法的这几个算子: crossover mutation selection rankingfrom sko.operators import ranking selection crossover mutation ga.register(operator_name='ranking' operator=ranking.ranking). \ register(operator_name='crossover' operator=crossover.crossover_2point). \ registe

scikit-opt

一个封装了7种启发式算法的 Python 代码库
(差分进化算法、遗传算法、粒子群算法、模拟退火算法、蚁群算法、鱼群算法、免疫优化算法)

python遗传算法多目标规划(易部署的Python遗传算法库)(1)

python遗传算法多目标规划(易部署的Python遗传算法库)(2)

python遗传算法多目标规划(易部署的Python遗传算法库)(3)

python遗传算法多目标规划(易部署的Python遗传算法库)(4)

python遗传算法多目标规划(易部署的Python遗传算法库)(5)

python遗传算法多目标规划(易部署的Python遗传算法库)(6)

python遗传算法多目标规划(易部署的Python遗传算法库)(7)

python遗传算法多目标规划(易部署的Python遗传算法库)(8)

python遗传算法多目标规划(易部署的Python遗传算法库)(9)

安装

pip install scikit-opt

或者直接把源代码中的 sko 文件夹下载下来放本地也调用可以

特性

特性1:UDF(用户自定义算子)

举例来说,你想出一种新的“选择算子”,如下
-> Demo code: examples/demo_ga_udf.py#s1

# step1: define your own operator: def selection_tournament(algorithm tourn_size): FitV = algorithm.FitV sel_index = [] for i in range(algorithm.size_pop): aspirants_index = np.random.choice(range(algorithm.size_pop) size=tourn_size) sel_index.append(max(aspirants_index key=lambda i: FitV[i])) algorithm.Chrom = algorithm.Chrom[sel_index :] # next generation return algorithm.Chrom

导入包,并且创建遗传算法实例
-> Demo code: examples/demo_ga_udf.py#s2

import numpy as np from sko.GA import GA GA_TSP demo_func = lambda x: x[0] ** 2 (x[1] - 0.05) ** 2 (x[2] - 0.5) ** 2 ga = GA(func=demo_func n_dim=3 size_pop=100 max_iter=500 lb=[-1 -10 -5] ub=[2 10 2] precision=[1e-7 1e-7 1])

把你的算子注册到你创建好的遗传算法实例上
-> Demo code: examples/demo_ga_udf.py#s3

ga.register(operator_name='selection' operator=selection_tournament tourn_size=3)

scikit-opt 也提供了十几个算子供你调用
-> Demo code: examples/demo_ga_udf.py#s4

from sko.operators import ranking selection crossover mutation ga.register(operator_name='ranking' operator=ranking.ranking). \ register(operator_name='crossover' operator=crossover.crossover_2point). \ register(operator_name='mutation' operator=mutation.mutation)

做遗传算法运算
-> Demo code: examples/demo_ga_udf.py#s5

best_x best_y = ga.run() print('best_x:' best_x '\n' 'best_y:' best_y)

现在 udf 支持遗传算法的这几个算子: crossover mutation selection ranking

Scikit-opt 也提供了十来个算子,参考这里

提供一个面向对象风格的自定义算子的方法,供进阶用户使用:

-> Demo code: examples/demo_ga_udf.py#s6

class MyGA(GA): def selection(self tourn_size=3): FitV = self.FitV sel_index = [] for i in range(self.size_pop): aspirants_index = np.random.choice(range(self.size_pop) size=tourn_size) sel_index.append(max(aspirants_index key=lambda i: FitV[i])) self.Chrom = self.Chrom[sel_index :] # next generation return self.Chrom ranking = ranking.ranking demo_func = lambda x: x[0] ** 2 (x[1] - 0.05) ** 2 (x[2] - 0.5) ** 2 my_ga = MyGA(func=demo_func n_dim=3 size_pop=100 max_iter=500 lb=[-1 -10 -5] ub=[2 10 2] precision=[1e-7 1e-7 1]) best_x best_y = my_ga.run() print('best_x:' best_x '\n' 'best_y:' best_y)

特性2: GPU 加速

GPU加速功能还比较简单,将会在 1.0.0 版本大大完善。
有个 demo 已经可以在现版本运行了

特性3:断点继续运行

例如,先跑10代,然后在此基础上再跑20代,可以这么写:

from sko.GA import GA func = lambda x: x[0] ** 2 ga = GA(func=func n_dim=1) ga.run(10) ga.run(20)快速开始

1. 差分进化算法

Step1:定义你的问题,这个demo定义了有约束优化问题
-> Demo code: examples/demo_de.py#s1

''' min f(x1 x2 x3) = x1^2 x2^2 x3^2 s.t. x1*x2 >= 1 x1*x2 <= 5 x2 x3 = 1 0 <= x1 x2 x3 <= 5 ''' def obj_func(p): x1 x2 x3 = p return x1 ** 2 x2 ** 2 x3 ** 2 constraint_eq = [ lambda x: 1 - x[1] - x[2] ] constraint_ueq = [ lambda x: 1 - x[0] * x[1] lambda x: x[0] * x[1] - 5 ]

Step2: 做差分进化算法
-> Demo code: examples/demo_de.py#s2

from sko.DE import DE de = DE(func=obj_func n_dim=3 size_pop=50 max_iter=800 lb=[0 0 0] ub=[5 5 5] constraint_eq=constraint_eq constraint_ueq=constraint_ueq) best_x best_y = de.run() print('best_x:' best_x '\n' 'best_y:' best_y)

2. 遗传算法

第一步:定义你的问题
-> Demo code: examples/demo_ga.py#s1

import numpy as np def schaffer(p): ''' This function has plenty of local minimum with strong shocks global minimum at (0 0) with value 0 ''' x1 x2 = p x = np.square(x1) np.square(x2) return 0.5 (np.sin(x) - 0.5) / np.square(1 0.001 * x)

第二步:运行遗传算法
-> Demo code: examples/demo_ga.py#s2

from sko.GA import GA ga = GA(func=schaffer n_dim=2 size_pop=50 max_iter=800 lb=[-1 -1] ub=[1 1] precision=1e-7) best_x best_y = ga.run() print('best_x:' best_x '\n' 'best_y:' best_y)

第三步:用 matplotlib 画出结果
-> Demo code: examples/demo_ga.py#s3

import pandas as pd import matplotlib.pyplot as plt Y_history = pd.DataFrame(ga.all_history_Y) fig ax = plt.subplots(2 1) ax[0].plot(Y_history.index Y_history.values '.' color='red') Y_history.min(axis=1).cummin().plot(kind='line') plt.show()

python遗传算法多目标规划(易部署的Python遗传算法库)(10)

2.2 遗传算法用于旅行商问题

GA_TSP 针对TSP问题重载了 交叉(crossover)、变异(mutation) 两个算子

第一步,定义问题。
这里作为demo,随机生成距离矩阵. 实战中从真实数据源中读取。

-> Demo code: examples/demo_ga_tsp.py#s1

import numpy as np from scipy import spatial import matplotlib.pyplot as plt num_points = 50 points_coordinate = np.random.rand(num_points 2) # generate coordinate of points distance_matrix = spatial.distance.cdist(points_coordinate points_coordinate metric='euclidean') def cal_total_distance(routine): '''The objective function. input routine return total distance. cal_total_distance(np.arange(num_points)) ''' num_points = routine.shape return sum([distance_matrix[routine[i % num_points] routine[(i 1) % num_points]] for i in range(num_points)])

第二步,调用遗传算法进行求解
-> Demo code: examples/demo_ga_tsp.py#s2

from sko.GA import GA_TSP ga_tsp = GA_TSP(func=cal_total_distance n_dim=num_points size_pop=50 max_iter=500 prob_mut=1) best_points best_distance = ga_tsp.run()

第三步,画出结果:
-> Demo code: examples/demo_ga_tsp.py#s3

fig ax = plt.subplots(1 2) best_points_ = np.concatenate([best_points [best_points[0]]]) best_points_coordinate = points_coordinate[best_points_ :] ax[0].plot(best_points_coordinate[: 0] best_points_coordinate[: 1] 'o-r') ax[1].plot(ga_tsp.generation_best_Y) plt.show()

python遗传算法多目标规划(易部署的Python遗传算法库)(11)

3. 粒子群算法

(PSO Particle swarm optimization)

3.1 带约束的粒子群算法

第一步,定义问题
-> Demo code: examples/demo_pso.py#s1

def demo_func(x): x1 x2 x3 = x return x1 ** 2 (x2 - 0.05) ** 2 x3 ** 2

第二步,做粒子群算法
-> Demo code: examples/demo_pso.py#s2

from sko.PSO import PSO pso = PSO(func=demo_func dim=3 pop=40 max_iter=150 lb=[0 -1 0.5] ub=[1 1 1] w=0.8 c1=0.5 c2=0.5) pso.run() print('best_x is ' pso.gbest_x 'best_y is' pso.gbest_y)

第三步,画出结果
-> Demo code: examples/demo_pso.py#s3

import matplotlib.pyplot as plt plt.plot(pso.gbest_y_hist) plt.show()

python遗传算法多目标规划(易部署的Python遗传算法库)(12)

python遗传算法多目标规划(易部署的Python遗传算法库)(13)


see examples/demo_pso.py

3.2 不带约束的粒子群算法

-> Demo code: examples/demo_pso.py#s4

pso = PSO(func=demo_func dim=3) fitness = pso.run() print('best_x is ' pso.gbest_x 'best_y is' pso.gbest_y)

4. 模拟退火算法

(SA Simulated Annealing)

4.1 模拟退火算法用于多元函数优化

第一步:定义问题
-> Demo code: examples/demo_sa.py#s1

demo_func = lambda x: x[0] ** 2 (x[1] - 0.05) ** 2 x[2] ** 2

第二步,运行模拟退火算法
-> Demo code: examples/demo_sa.py#s2

from sko.SA import SA sa = SA(func=demo_func x0=[1 1 1] T_max=1 T_min=1e-9 L=300 max_stay_counter=150) best_x best_y = sa.run() print('best_x:' best_x 'best_y' best_y)

python遗传算法多目标规划(易部署的Python遗传算法库)(14)

第三步,画出结果
-> Demo code: examples/demo_sa.py#s3

import matplotlib.pyplot as plt import pandas as pd plt.plot(pd.DataFrame(sa.best_y_history).cummin(axis=0)) plt.show()

另外,scikit-opt 还提供了三种模拟退火流派: Fast Boltzmann Cauchy. 更多参见 more sa

4.2 模拟退火算法解决TSP问题(旅行商问题)

第一步,定义问题。(我猜你已经无聊了,所以不黏贴这一步了)

第二步,调用模拟退火算法
-> Demo code: examples/demo_sa_tsp.py#s2

from sko.SA import SA_TSP sa_tsp = SA_TSP(func=cal_total_distance x0=range(num_points) T_max=100 T_min=1 L=10 * num_points) best_points best_distance = sa_tsp.run() print(best_points best_distance cal_total_distance(best_points))

第三步,画出结果
-> Demo code: examples/demo_sa_tsp.py#s3

from matplotlib.ticker import FormatStrFormatter fig ax = plt.subplots(1 2) best_points_ = np.concatenate([best_points [best_points[0]]]) best_points_coordinate = points_coordinate[best_points_ :] ax[0].plot(sa_tsp.best_y_history) ax[0].set_xlabel("Iteration") ax[0].set_ylabel("Distance") ax[1].plot(best_points_coordinate[: 0] best_points_coordinate[: 1] marker='o' markerfacecolor='b' color='c' linestyle='-') ax[1].xaxis.set_major_formatter(FormatStrFormatter('%.3f')) ax[1].yaxis.set_major_formatter(FormatStrFormatter('%.3f')) ax[1].set_xlabel("Longitude") ax[1].set_ylabel("Latitude") plt.show()

python遗传算法多目标规划(易部署的Python遗传算法库)(15)

咱还有个动画

python遗传算法多目标规划(易部署的Python遗传算法库)(16)

↑参考代码 examples/demo_sa_tsp.py

5. 蚁群算法

蚁群算法(ACA Ant Colony Algorithm)解决TSP问题

-> Demo code: examples/demo_aca_tsp.py#s2

from sko.ACA import ACA_TSP aca = ACA_TSP(func=cal_total_distance n_dim=num_points size_pop=50 max_iter=200 distance_matrix=distance_matrix) best_x best_y = aca.run()

python遗传算法多目标规划(易部署的Python遗传算法库)(17)

6. 免疫优化算法

(immune algorithm IA)
-> Demo code: examples/demo_ia.py#s2

from sko.IA import IA_TSP ia_tsp = IA_TSP(func=cal_total_distance n_dim=num_points size_pop=500 max_iter=800 prob_mut=0.2 T=0.7 alpha=0.95) best_points best_distance = ia_tsp.run() print('best routine:' best_points 'best_distance:' best_distance)

python遗传算法多目标规划(易部署的Python遗传算法库)(18)

7. 人工鱼群算法

人工鱼群算法(artificial fish swarm algorithm AFSA)

-> Demo code: examples/demo_afsa.py#s1

def func(x): x1 x2 = x return 1 / x1 ** 2 x1 ** 2 1 / x2 ** 2 x2 ** 2 from sko.AFSA import AFSA afsa = AFSA(func n_dim=2 size_pop=50 max_iter=300 max_try_num=100 step=0.5 visual=0.3 q=0.98 delta=0.5) best_x best_y = afsa.run() print(best_x best_y)

本文为阿里云原创内容,未经允许不得转载。

猜您喜欢: