快捷搜索:  汽车  科技

全球顶级机器人技术(三大先锋机器人设计)

全球顶级机器人技术(三大先锋机器人设计)图 2:未激活和激活机器人的连续性形体变化分析图 1:类变形虫(amoeba-like)分子机器人的设计和显微图像一、在体内进行医疗手术的微型机器人一项研究将科幻转为了现实:研究者开发了一种能在身体内自由移动、相互通信、执行任务并在完成后降解的微型和纳米级机器人。加州大学纳米工程研究团队,是新一期 Science Robotics 这篇 Review 的作者,文章认为这些微型机器人将对疾病诊断、治疗和预防等产生重要影响。文章强调了医学领域的四个方向,在这些方向上,微型机器人已经成功地进行了概念验证(proof-of-concept)研究:靶向传送、精准手术、生物体目标的感知和解毒。本论文合作作者,UCSD 纳米工程主席 Joseph Wang 说:「活性药物的传送是微型机器人最有前景的商业应用」。例如,去年 12 月瑞士 ETH 的研究人员就表明,线形纳米机器人可受控靶向杀死癌细胞。

选自Science Robotics

机器之心编译

参与:蒋思源、微胖、吴攀

前两天波士顿动力发布的哪吒一样的机器人 Handle 让很多人赞叹或忧心机器人的快速发展,但不可否认的是这种快速发展确实正在发生。最新一期的《科学·机器人》刊登了三篇文章,介绍了机器人领域的几项其它研究前沿,其中包括可以在人体内移动和进行手术的微型机器人、更小的利用纳米生物工程打造的分子机器人以及在人形机器人上进行组织移植物生长方面的探索。机器之心在此对这三项研究进行了整理介绍,更多详情请参阅 http://robotics.sciencemag.org/content/2/4

一、在体内进行医疗手术的微型机器人

一项研究将科幻转为了现实:研究者开发了一种能在身体内自由移动、相互通信、执行任务并在完成后降解的微型和纳米级机器人。加州大学纳米工程研究团队,是新一期 Science Robotics 这篇 Review 的作者,文章认为这些微型机器人将对疾病诊断、治疗和预防等产生重要影响。

文章强调了医学领域的四个方向,在这些方向上,微型机器人已经成功地进行了概念验证(proof-of-concept)研究:靶向传送、精准手术、生物体目标的感知和解毒。本论文合作作者,UCSD 纳米工程主席 Joseph Wang 说:「活性药物的传送是微型机器人最有前景的商业应用」。例如,去年 12 月瑞士 ETH 的研究人员就表明,线形纳米机器人可受控靶向杀死癌细胞。

图 1:类变形虫(amoeba-like)分子机器人的设计和显微图像

全球顶级机器人技术(三大先锋机器人设计)(1)

图 2:未激活和激活机器人的连续性形体变化分析

全球顶级机器人技术(三大先锋机器人设计)(2)

图 3:个体机器人转换形体改变

全球顶级机器人技术(三大先锋机器人设计)(3)

图 4:机器人操作半径标准差

三、在人形机器人上进行组织移植物生长的探索

本期焦点(Focus)文章《在人形机器人上进行组织移植物生长:会是再生医学的未来战略吗?(Growing tissue grafts on humanoid robots: A future strategy in regenerative medicine?)》讲述了人形机器人在再生医学中的重要战略意义。

我们知道,过去十年中,人形机器人取得了巨大进步。其应用前景比较广阔,从医学到太空探索。尤其是,带有骨骼肌肉的人形机器人(比如,Kenshiro 和 Eccerobot)能以更安全、自然的方式与人类互动。这类机器人旨在尽可能复制人类骨骼肌肉系统(骨头-筋腱-肌肉)的解剖细节。

全球顶级机器人技术(三大先锋机器人设计)(4)

东京大学开发的 Kenshiro

因此,我们也毫不奇怪这类机器人也为科学和医学领域提供了新的契机。在这篇文章中,作者认为,在组织移植中,这类机器人或能帮上忙。

在老年人口中,骨骼肌肉组织失调或者损伤,越来越成为健康、经济和社会问题。通常,组织失灵会带来疼痛,也会导致行动不便。因此,一种有前途的修复策略就是工程再造组织移植物。

组织工程学的发展得益于生物反应器系统,该系统可以控制维持活体细胞以及组织得以体外存活的环境条件。不过,打造功能性的组织移植物,需要更先进的生物反应器。当前的生物反应器的问题是,无法模拟细胞所需的真实力学环境,因此无法打造用于临床的组织移植物。

成功研发出肌肉骨骼组织(体内体外)的关键就是力学模拟。较之静态条件,现有文献表明,体外力学模拟可以尽可能密切模仿有机体内的组织体验。但是,到目前为止,肌肉骨骼组织工程学中的生物反应器还相对原始。主要不足在于没办法模拟身体体验到的力学负荷(mechanical loadings)。为了能生产出可用于临床的相关移植物,未来的生物反应器需要满足以下几个条件:

首先,通过结合张力、提供多方压力,扭力以及剪应力,提供多向应力;

其次,根据解剖位置,调节负载状态适应每个个体组织;

最后,能够打造出类似天然身体部分的组织结构;

在这一语境下,人形肌肉骨骼机器人就变得很相关了。通过模仿人类骨骼结构以及不同活动中的身体运动,这类机器人能够帮助我们克服当前生物反应器的局限性。

设计一个带骨骼肌肉的人形机器人需要思考这几个问题。机器人如何与环境互动?如何驱动人形——生物反应器(humanoid-bioreactor)?如何感知力量并加以控制?

在医学、科学和工程学领域,人形——生物反应器系统会有无数应用机遇,特别可被用于:

  1. 构造更适用于临床的肌肉骨骼组织移植物,特别是,通过匹配机器人形态学、力学与病患需求,实现定制化组织移植;

  2. 支持多相结构的研发,比如,骨头- 筋腱-肌肉移植,这也是组织工程学中的一个重要研究领域,因为治疗期间的失败通常出现在组织交界处;

  3. 进一步深入了解力学生物学(mechanobiology)以及组织治愈机制;

  4. 更快地筛查未来用于肌肉骨骼修复的支架,减少临床前测试中动物模型的使用;

  5. 加快研发更加安全的带肌肉骨骼机器人的研发,让其运动更加自然。鉴于基于细胞的驱动器的出现,也会促进生物混合(biohybrid)人形机器人的发展。

猜您喜欢: