快捷搜索:  汽车  科技

正态密度函数的积分结论(从微积分角度证明)

正态密度函数的积分结论(从微积分角度证明)所以根据广义积分的收敛你可以轻易得到:分别加上积分符号,得到:所以当x不等于0时,e^>1 x 将x换成x^2或者-x^2可得,可得所以很快得到一个等式那么对于任意的自然数n,我们有

本篇我们来证明一个常见的优美的积分等式,聪明你是否看出如下等式曾在哪里出现过呢?没错如下和正态分布中概率密度函数很像。但我们仅从积分学的角度来分析正面它。·证明它灵活的数学技巧,你准备好了吗?

正态密度函数的积分结论(从微积分角度证明)(1)

因为e^-x^2是关于x的偶函数,所以我们明显可以想到

正态密度函数的积分结论(从微积分角度证明)(2)

所以你只需要证明,学过概率论与数理统计的朋友,应该很熟悉这个式子

正态密度函数的积分结论(从微积分角度证明)(3)

根据泰勒公式我们得到

正态密度函数的积分结论(从微积分角度证明)(4)

所以当x不等于0时,e^>1 x 将x换成x^2或者-x^2可得,可得

正态密度函数的积分结论(从微积分角度证明)(5)

所以很快得到一个等式

正态密度函数的积分结论(从微积分角度证明)(6)

那么对于任意的自然数n,我们有

正态密度函数的积分结论(从微积分角度证明)(7)

分别加上积分符号,得到:

正态密度函数的积分结论(从微积分角度证明)(8)

所以根据广义积分的收敛你可以轻易得到:

正态密度函数的积分结论(从微积分角度证明)(9)

为了让大家更好理解,我还是补充上上述等式的来源

正态密度函数的积分结论(从微积分角度证明)(10)

为了求解上述不等式两边的积分值,我们首先假设x=cot(t)=1/tant中的积分变量x替换成t,cot(t)是区间(0 π/2)上关于t的连续可微函数,因为0<cot(t)< ∞,cot(π/2)=0 dcot(t)/dt=-1/sint^2 又由于1 x^2=1/sin^t 所以我们得到

正态密度函数的积分结论(从微积分角度证明)(11)

同理,若x=cost 0<t<π/2 dcost/dt=-sint 1-x^2=sint^2 则得到

正态密度函数的积分结论(从微积分角度证明)(12)

另一方面,根据变量变换

正态密度函数的积分结论(从微积分角度证明)(13)

我们得到

正态密度函数的积分结论(从微积分角度证明)(14)

则上面的开头得到的积分不等式就变成了

正态密度函数的积分结论(从微积分角度证明)(15)

根据类似于斯特林公式可得到(如有必要会有专门文章解说)

正态密度函数的积分结论(从微积分角度证明)(16)

正态密度函数的积分结论(从微积分角度证明)(17)

因此

正态密度函数的积分结论(从微积分角度证明)(18)

对上式进行变换x=t/2^1/2 则可得

正态密度函数的积分结论(从微积分角度证明)(19)

正态密度函数的积分结论(从微积分角度证明)(20)

这个就是数学中标准正态分布的概率密度公式。

猜您喜欢: