量子拓扑超导体:首个室温超导体问世 为了发现它
量子拓扑超导体:首个室温超导体问世 为了发现它超导体中的磁通量量子化可以用来制造超导计算机。磁通量量子化,又叫做约瑟夫森效应,指当两层超导体之间的绝缘层薄至原子尺寸时,电子对可以穿过绝缘层产生隧道电流的现象。超导现象是在100多年前,由荷兰物理学家昂内斯发现。他把汞降低到4.2K(约零下269度)时,发现汞的电阻突然消失,因此获得了1913年诺贝尔物理学奖。除了「零电阻」外,它还具有「完全抗磁性」和「磁通量量子化」的特点。完全抗磁性,又称迈斯纳效应,能让超导体内部的磁感应强度为零,及超导体排斥体内的磁场。这种特性最大的用途是用来做磁悬浮。
为了寻找这种室温超导化合物,他们用废了几十对金刚石砧,每一对的价格3000美元。论文通讯作者Ranga Dias说:“我们研究的最大问题就是金刚石预算。”
金刚石砧产生的超导材料数量极少,大约是单个喷墨颗粒的大小。而且这种超导材料不够稳定,只要放置过夜就会分解。
超高压条件以及不稳定的性质,意味着这种室温超导体难以有实际性质,但这却是人类发现的第一种室温超导体,探索超导体100多年的道路上具有里程碑意义。
应用广泛的超导体超导体(superconductor),是指在低于某一温度时,电阻为零的导体。
超导现象是在100多年前,由荷兰物理学家昂内斯发现。他把汞降低到4.2K(约零下269度)时,发现汞的电阻突然消失,因此获得了1913年诺贝尔物理学奖。
除了「零电阻」外,它还具有「完全抗磁性」和「磁通量量子化」的特点。
完全抗磁性,又称迈斯纳效应,能让超导体内部的磁感应强度为零,及超导体排斥体内的磁场。这种特性最大的用途是用来做磁悬浮。
磁通量量子化,又叫做约瑟夫森效应,指当两层超导体之间的绝缘层薄至原子尺寸时,电子对可以穿过绝缘层产生隧道电流的现象。
超导体中的磁通量量子化可以用来制造超导计算机。
除了这些高大上的设备,我们的日常生活也离不开超导体,比如医院里的核磁共振成像,还有手机信号基站也需要超导体来制造滤波器。
然而,超导体的低温限制,成了它的阻碍它应用的最大局限。
直到1987年,美籍华裔物理学家朱经武发现了液氮(77K)温区的“高温超导体”钇钡铜氧,才让超导体应用更加广泛。
但科学家们希望能够找到一种无需冷却,在室温下即可使用的超导体。
这也正是此次发现能够引起如此反响的原因——是科学家们苦苦探寻了几十年的一种超导体,提高温度意味着不需要复杂的冷却设备。
要知道,此次的研究要比去年的最新进展足足高出了30多摄氏度。
除了高温这个局限性外,还有就是高压。
超导体只能在极高的压力下存活,相当于接近地球中心的压力,相当于马里亚纳海沟压力的40倍。
因此,也正如研究作者所说,这意味着它不会有任何直接的实际应用。
尽管如此,物理学家们仍然希望,这个超导体能够为开发在较低压力下工作的零电阻材料铺平道路。
5年追梦成真5年前的德国物理学家的发现为找到室温超导体敲开了大门。
要知道为何氢-硫-碳会成为室温超导体,我们先介绍一下超导的原理。
在正常状态下,电子以个体形式运动,碰撞到原子就会产生电阻。
而在超导体中,两个电子会配对形成所谓“库珀对”(Copper pair)。一旦电子结伴,它们就会以量子液体的形式无阻碍地通过导体,让电阻彻底消失。
库珀对的形成可以这样通俗理解:
当带正电的原子被电子吸引后,就会聚集起来,这里正电荷多一点,自然会吸引别的电子过来,这两个电子即完成配对。