百慕大三角是可知论吗?加百利号角悖论是什么
百慕大三角是可知论吗?加百利号角悖论是什么图中出现的就是利用微积分计算面积和体积的算式,可以看到用到的微积分知识都是相当基础的。当时的数学界也是议论纷纷,直到后来微积分出现后,人们利用微积分再次对其验证,结果发现结论是正确的,确实是面积无穷大,体积有限,且体积值为Π。这时候,托里拆利就想去计算这个小号的面积和体积是多少?值得注意的是,当时距离微积分的出现还有几十年呢。因此托里拆利只能用当时数学中的卡瓦列利原理(这个卡瓦列利原理,实际上就是中国的祖暅原理,但祖暅原理要比其早了一千年),之后托里拆利得到这个小号的表面积无穷大,但体积却是一个有限值。这个结论让人非常惊讶,因为从直观上来讲,一个物体在体积有限的情况,它的表面积竟然是无穷大的,难以想象它的存在。没错,因为这个小号过于违背人们的直觉,以至于当时英国著名的哲学家托马斯·霍布斯直呼:如果你想要从感官上去理解它,只有疯子才能办到!
我们在三维空间中构造出一个表面积无穷大,但体积却是有限的形状。如下图所示,可以看出这个形状类似乐器——小号,又称为加百利号角。
这个号角的怪异之处就在于:如果你想要向里面灌水去填满它,这是可以做到的;但如果你想用油漆将其表面都刷一遍,那么不好意思,这个办不到。因为理论上你需要无穷多的油漆才能刷满它。
乍一听,可能很多朋友都不相信,怎么可能有这种东西呢?但实际上当初提出这个设想的可是正正经经的科学家——埃万杰利斯塔·托里拆利。没错就是我们中学时代,物理课上讲的那个测量大气压的托里拆利。
其构思是在数学层面进行的,过程很简单:我们设想将反比例函数y=1/x,其中沿x大于等于一的部分,绕着x轴旋转一圈,就可以得到这么一个形状,长的和小号很像。
这时候,托里拆利就想去计算这个小号的面积和体积是多少?值得注意的是,当时距离微积分的出现还有几十年呢。因此托里拆利只能用当时数学中的卡瓦列利原理(这个卡瓦列利原理,实际上就是中国的祖暅原理,但祖暅原理要比其早了一千年),之后托里拆利得到这个小号的表面积无穷大,但体积却是一个有限值。
这个结论让人非常惊讶,因为从直观上来讲,一个物体在体积有限的情况,它的表面积竟然是无穷大的,难以想象它的存在。
没错,因为这个小号过于违背人们的直觉,以至于当时英国著名的哲学家托马斯·霍布斯直呼:如果你想要从感官上去理解它,只有疯子才能办到!
当时的数学界也是议论纷纷,直到后来微积分出现后,人们利用微积分再次对其验证,结果发现结论是正确的,确实是面积无穷大,体积有限,且体积值为Π。
图中出现的就是利用微积分计算面积和体积的算式,可以看到用到的微积分知识都是相当基础的。
实际上关于这个争论,从客观世界出发,并没有多烧脑,因为数学图像是理想模型,这个小号就是一个长度无限的曲面,毫无厚度可言,而且它根本不需要考虑微观层面的物质构成。
就好比于,在数学上我们可以说一条线、一个面。但实际上,只有长度,却没有厚度和宽度的线;以及只有长度和宽度,却没有厚度的面,二者在客观世界中我们根本造不出来。
因此这个小号也是造不出来的,所谓的悖论也只是存在于人们的直觉感受上而已。
如有兴趣,可以去我的主页,视频栏目下查看对应讲解视频!