深海迷航人物的装备有哪些?嘟嘟嘟潜艇酱到底是怎么收到命令的呢
深海迷航人物的装备有哪些?嘟嘟嘟潜艇酱到底是怎么收到命令的呢世界核平讲究一个我死你也得死时间到了20世纪50年代,世界陷入冷战。随着核动力技术的发展,核动力潜艇逐渐开始替代传统的柴电动力潜艇,而电解水技术也解决了潜艇的氧气问题。这两样技术革新大大延长了潜艇的潜航能力——从以往的几个小时延长到了数周,甚至数月。此外,由于潜艇可以发射带核弹头的弹道导弹,随着苏联和美国的弹道导弹潜艇的相继服役,以潜艇为主力的“第二次核反击力量”诞生5。德国的U型潜水艇四年间共击沉了协约国舰船数百万吨,立下了赫赫战功。到了第二次世界大战,英国发明了第一代“潜艇克星”——声纳,给德国的潜艇舰队带来了巨大的损失,在三个月内击沉了超过一百艘潜艇。而日本、美国和英国等国家也在二战期间发展出了自己的潜艇,潜艇技术逐渐扩散到世界各个国家。真理正在朝我们缓慢驶来20世纪50年代-核动力潜艇
潜艇的构想最早出现于15世纪
在列昂纳多·达芬奇的奇思妙想中,他设想了一种“可以水下航行的船”。但是他认为这种想法是邪恶的,因此没有把这个想法变为设计图。进入16世纪,荷兰裔英国人克尼利厄斯·雅布斯纵·戴博尔建成了世界上首艘潜艇,由人力摇橹推进。很快,人们发现潜艇具有极高的军事价值,于是在18世纪的美国独立战争中,耶鲁大学的的大卫·布希奈尔建成了第一艘战争用潜艇,名为海龟号,内部仅能容纳一人操作方向舵和螺旋桨。后来到了19世纪,法国人首先使用储存好的压缩空气代替人力,建成了第一艘非人力驱动的潜水艇。不久后英国人又发明了用蒸汽推进的第一艘热机驱动潜水艇。
鹦鹉螺号图纸(1800年)
进入到第一次世界大战,潜水艇得到了大规模的军事应用
德国的U型潜水艇四年间共击沉了协约国舰船数百万吨,立下了赫赫战功。到了第二次世界大战,英国发明了第一代“潜艇克星”——声纳,给德国的潜艇舰队带来了巨大的损失,在三个月内击沉了超过一百艘潜艇。而日本、美国和英国等国家也在二战期间发展出了自己的潜艇,潜艇技术逐渐扩散到世界各个国家。
真理正在朝我们缓慢驶来
20世纪50年代-核动力潜艇
时间到了20世纪50年代,世界陷入冷战。随着核动力技术的发展,核动力潜艇逐渐开始替代传统的柴电动力潜艇,而电解水技术也解决了潜艇的氧气问题。这两样技术革新大大延长了潜艇的潜航能力——从以往的几个小时延长到了数周,甚至数月。此外,由于潜艇可以发射带核弹头的弹道导弹,随着苏联和美国的弹道导弹潜艇的相继服役,以潜艇为主力的“第二次核反击力量”诞生5。
世界核平讲究一个我死你也得死
随着潜艇技术的发展,潜艇的作业深度越来越深,从原来的数米到现在的数百米,有时能达到数千米甚至上万米(1995年日本“海沟”号潜入马里亚纳海沟),潜艇的通讯难度也变得越来越高。
众所周知,在水中声波可以传播到很远的地方,最早的潜艇通讯就是通过声波实现的。然而声波通讯是一把双刃剑——既然潜艇能通过声波联系到陆地上的基地,那么敌人也能通过声波寻找到你的潜艇。最早的潜艇探测器就是利用声波的传播性制作的声纳,因此用声波进行通讯非常容易暴露自身的位置。
海底地形勘探船船载声纳的工作原理:当船经过工作海域时,船载声纳会发出宽度四倍于海水深度的扇形声纳射线以扫描海床。为了得到海底的连续照片,(勘探船)通常需要进行多轮扫描。(右边黄字)射线抵达海床后会反射产生回声,由勘探船接收。
声波不能用,那我们用什么呢——显而易见,答案是电磁波。然而由于无线电波在进入导体后会迅速衰减,潜伏在海水(导体)中的潜艇无法通过常规无线电波与外界通信。通过电动力学中的简单计算可知,在导体中电磁波的趋肤深度(可以理解为传播距离)为:
其中为介质的电导率,为电磁波的频率,为介质的磁导率。在这里我们可以看到,电导率越高的材料,电磁波的传播距离越短;频率越低的电磁波在介质中的传播距离越长。
光也是电磁波,所以海底是一片漆黑的
显然我们只能利用较低频率的电磁波和潜艇进行通讯。最早被用于潜艇通讯的电磁波波段为VLF波(Very Low Frequency,甚低频,波长在10km到100km之间),该波段的电磁波能穿透到海平面以下20米左右。潜艇可以呆在较深处,然后释放一个漂浮的天线接收信号,从而躲过敌军的探测。
然而这么做存在两个严重的问题:
其一,由于该波段的电磁波穿透深度仍然较浅,潜艇只能冒着一定风险上浮到一定深度再释放信号接收器,因此潜艇的接收信号时间窗口较短,且仍有一定风险被敌方的声纳发现;
其二,由于电磁波的波长较长,其发射信号塔往往需要占地数平方公里,潜艇显然不能携带这么巨型的信号发射器,因此只能被动的接收信号,没有办法进行回复。
美国的VLF发射设备地理位置
怎么办呢?最直接的思路显然就是继续降低使用的电磁波的频率,从而使电磁波可以传播到更深的海水中,使得潜艇可以在其作业深度接收信号。
进入到上世纪60年代末,随着冷战形势变得愈发严峻,美国海军提出了Sanguine计划。计划中提出使用ELF波(Extremely Low Frequency,极低频,波长在10 000km到100 000km之间)来进行潜艇通信,然而这个计划因为潜在的严重环保问题而搁浅。后来实际建成的ELF波段通信工程被称为ELF计划,于1969年开始建设,1989年开始正式运作,发射频率为76Hz的极低频电磁波。建成的计划设施中包含两个电磁波发射器,实际相当于长达135公里的地面线形天线。由于ELF波发射天线极难建设,当今世界上只有美国、中国、俄罗斯和印度拥有ELF波发射设备。
ELF计划发射天线之一
天线总不能越建越大(不然环保工作者要找上门来了,而且也没有钱钱了)。于是,进入到90年代,美国有科学家提出使用在轨卫星来实现ELF波的发射3。其原理也相当简单粗暴,就是让一颗卫星拖着一根长达300公里的金属线绕着地球转圈,这样就相当于一根长达300公里的垂直天线了……
然而不管怎么说,这只解决了刚才提到的第一个问题,潜艇通信依然只是单向的——在不上浮的前提下依然无法进行双向通信。一种可能的技术是将等离子体制作为电磁波的发射和接收天线。频率越低的电磁波,其波长也就越长。而在电动力学中我们知道,要发射波长越长的电磁波,我们需要尺寸越大的天线(锅盖)。因此在潜艇通信的发展历程中,人类就在不停地建造更大的天线,发射频率更低的电磁波,从而穿透更深的海水。等离子体天线概念的出现一定程度上打破了这种困局。因为传统天线的工作频率取决于天线的物理尺寸,而等离子体的振动频率取决于等离子体的密度,因此理论上可以大大缩小天线的尺寸,从而实现潜艇的双向通信。
一个简单的等离子体天线
由于等离子体天线的便携性,一旦ELF波段等离子体天线被成功制造,潜艇通信将会迎来重大的革新——潜艇上笨重的垂直偶极天线、气球悬挂的天线和低效率的水平电子偶极ELF天线将统统会被便携的等离子体天线取代2。
此外等离子体天线还有一系列特点和应用1,4:
·等离子体天线可以抵抗电磁武器的攻击
· 在不使用的时候,等离子体天线极难被发现(相对于传统天线)
· 等离子体天线的性质受一系列的参数调控(温度、密度、磁场、电场、压力……),因此灵活性极强
· 等离子体天线有较低的热噪音
· ……
因此等离子体天线具有相当大的应用潜力,或许在未来某日外星人入侵地球的时候,潜艇可以大显身手,保卫地球!
参考文献:
[1] Abdul Samad Kashif Azim Shahzada Alamgir Khan. 2015. "Comparative Analysis of Plasma Antenna with Metal Antenna." International Journal of Computer Applications.
[2] Anderson Theodore R. 1997. "ELF Plasma Antenna." https://apps.dtic.mil/dtic/tr/fulltext/u2/a637098.pdf.
[3] Bannister P. R. J. K. Harrison C. C. Rupp R. W. P. King M. L. Cosmo E. C. Lorenzini C. J. Dyer and M. D. Grossi. 1993. "Orbiting transmitter and antenna for spaceborne communications at ELF/VLF to submerged submarines." In AGARD ELF/VLF/LF Radio Propagation and Systems Aspects 14 p (SEE N93-30727 11-32).
[4] 2020. Plasma Antenna. Accessed 2020.
https://en.wikipedia.org/wiki/Plasma_antenna.
[5] 2020. Wikipedia. Accessed 2020. https://zh.wikipedia.org/zh-cn/潛艇.
部分图片来自网络
撰稿:黄泽森
插画:zunzun
美编:李莹
来源:石头科普工作室
编辑:米老猫
↓ 点击标题即可查看 ↓
1. 套娃吗?你先看这个岛中湖中岛中湖中岛
2. 都靠这位天才科学家20岁时的论文,你才能用手机拍照发朋友圈
3. 朝天空开枪,子弹掉下来还有杀伤力吗?| No.206
4. 乐高还能悬浮在半空中?上百万人已看懵!
5. 古装片的射箭动作把物理学家看笑了,导演咱能不能专业点?
6. 即使被它淹没也不会窒息,这是什么神奇液体?
7. 数学课上捡了个橡皮,勾股定理就看不懂了
8. 物理学写给你的情书
9. 唯一两次获得诺贝物理学奖的人,你却不一定认识他
10. 妈妈问我的桌子为什么这么乱!