一文读懂电影中流浪地球里的科学奥秘(一文读懂电影中流浪地球里的科学奥秘)
一文读懂电影中流浪地球里的科学奥秘(一文读懂电影中流浪地球里的科学奥秘)图注:太阳自身有非常稳定的温度调节机制,在一个单一物种的存续时间里,其整体亮度都不会产生显著变化;图片来自网络在过去的40亿年里,太阳的整体亮度上升了大约20%。这种变化对于地球的生命演化产生了重要的影响,但是,在一个单一物种存续的时间(百万年到千万年)里,太阳的变化不会产生显著效应。如果太阳按照物理规律演化,那么在未来的10亿年里,太阳的能量输出将上升10%,这可能会引发地球上失控的温室效应。但这是非常长的时间尺度,在这之前人类自己引发的全球变暖就会造成严重的影响。绝大多数人可能从未想过,有一天太阳会改变。在过去的46亿年里,太阳一直持续稳定地为地球提供能量。这种能量来自于太阳核心发生的氢元素聚变反应——每4个氢原子核通过一系列的中间反应最终形成1个氦原子核。而1个氦原子的质量略小于4个氢原子之和,这中间的质量差别按照爱因斯坦的质能方程E=mc2, 转化成了太阳的能量。这些能量中的绝大部
物理好教师 2019-02-08
刘慈欣的小说《流浪地球》改编的同名电影《流浪地球》在全国上映。整部电影气势恢宏,讲述了太阳将变成红巨星,人类驱动地球逃离太阳系的故事。在观看电影的过程中,试着将自己当作一个“电影宇宙”的观察者,思考《流浪地球》宇宙观中的科学问题。下面我想和大家分享一下我对《流浪地球》中几个科学原理。
太阳的变化
在电影《流浪地球》中,太阳亮度的增加是地球不得不背井离乡,远遁太空的原因,但现实世界中的太阳,真的会发生这样的变化吗?
绝大多数人可能从未想过,有一天太阳会改变。在过去的46亿年里,太阳一直持续稳定地为地球提供能量。这种能量来自于太阳核心发生的氢元素聚变反应——每4个氢原子核通过一系列的中间反应最终形成1个氦原子核。而1个氦原子的质量略小于4个氢原子之和,这中间的质量差别按照爱因斯坦的质能方程E=mc2, 转化成了太阳的能量。这些能量中的绝大部分以光的形式发出,剩下的则由中微子携带。每一秒钟太阳会将六亿吨的氢原子转化为氦原子,产生的能量中有极其微小的一部分被地球接收到,供给地球上的生命所需。
图注:太阳上的核聚变为地球提供能量;图片来自网络
太阳自身有非常稳定的调节机制,保证光热的稳定输出:如果太阳内部的热核聚变反应因为某种原因略微加速,就会引起内部温度升高。这种升温会使得太阳整体微微地膨胀,从而使得核心温度和压力回复正常。对于太阳来说,这种调节在很短的时间里就可以完成。太阳自身发光的不稳定程度只有大约千分之一,造成的影响远远小于不同季节带来的差别。宇宙中相当多的恒星做不到像太阳这样稳定的调节,例如,我们熟知的猎户座第二亮星——参宿四就会因为不断地进行膨胀收缩,而在数百天时间里亮度变化超过2倍。
在过去的40亿年里,太阳的整体亮度上升了大约20%。这种变化对于地球的生命演化产生了重要的影响,但是,在一个单一物种存续的时间(百万年到千万年)里,太阳的变化不会产生显著效应。如果太阳按照物理规律演化,那么在未来的10亿年里,太阳的能量输出将上升10%,这可能会引发地球上失控的温室效应。但这是非常长的时间尺度,在这之前人类自己引发的全球变暖就会造成严重的影响。
图注:太阳自身有非常稳定的温度调节机制,在一个单一物种的存续时间里,其整体亮度都不会产生显著变化;图片来自网络
在《流浪地球》的原著中,科学家观察到太阳核心的演化加速了,并且在地球逃离到木星附近时就已转变成为了一颗红巨星,完全吞噬了金星和水星。从天文学的角度来看,太阳确实会在未来的某个时刻开始向红巨星转化。这是因为太阳核心的氢元素在聚变燃烧后会转化为暂时无法聚变的氦元素,沉积在太阳中心,形成一个致密的核。当这个致密的核变大,原本在太阳核心发生的氢核聚变燃烧,就转变为在致密的氦核之外发生。这种转变会使得太阳失去稳定性调节机制,能量产出不断增加,并且体积开始膨胀,变得更红。天文学上称处于这个阶段的恒星为“红巨星”。在这种演化的末期,红巨星中心积累了足够高的温度,最终会使得氦构成的核心开始聚变,失控的氦核心燃烧会在数秒的短暂时间内释放出巨大的能量,这被称作“氦闪”。
氦闪
我们再来具体介绍一下。
图注:太阳从诞生到膨胀为红巨星的过程。
氦闪的过程:氢燃烧变成的氦物质堆积在太阳核心,核心的物质越来越多,然后发生收缩温度升高,但核心的物质处于简并态,温度的升高并不能使其自动停止收缩,温度会越来越高,当跨过1亿度的门槛时,就发生了猛烈的爆炸式氦燃烧,数分钟内就把能够燃烧的氦变成了碳。但氦闪释放的能量都被太阳本身吸收,表面居然看不出内部发生了什么。地球之所以迫切需要逃离也是因为要躲避“氦闪“
推进地球的动力:重聚变发动机
图丨电影海报中的重聚变发动机喷射出蓝色的离子流(图源:《流浪地球》)
氢弹是一种剧烈的核聚变爆炸现象,人类无法直接利用这种能量。人类需要的是可控核聚变,就是说能够平稳输出能量的核聚变装置,到目前为止还处于实验阶段。在小说和电影中均未交待所谓“重聚变发动机”的准确定义到底是什么,不过在原文中倒是对这种发动机有句简单的解释:“利用岩石中的氧、硅元素进行核聚变反应,获得高能高压的等离子流。”所以可以将这种发动机理解为一套巨型的核聚变离子脉冲推进系统。
但主要是氧、硅等等这些原子序数较大的元素。这些元素能聚变吗?能!但实际上,难度恐怕高级外星人也做不到吧。
图注:《流浪地球》的能量来源也许是地球上的氧和硅核聚变产生的,这可能会永久改变地球面貌;图为电影海报
为什么要靠近木星
地球为了逃离太阳系,设定了一个飞往木星的冒险轨道,差点毁掉地球。这种冒险的原因是为了利用木星给地球加速。这种加速的方式俗称引力弹弓(gravitational slingshot)或者叫引力助推(gravity assist)。
图丨木星开始吸附地球大气(来源:《流浪地球》电影)
引力弹弓一般发生在一对重量相差悬殊的天体之间。这里我们用木星(红色球)和地球(蓝色球)举个例子,如图a和图b所示。
地球以速度V靠近木星,而木星在轨道上以速度U运行↓↓↓
图 a 引力弹弓的示意图
足够靠近后,地球被木星引力抓住,牵引,优雅地转体半周,然后像掷铁饼那样甩出去↓↓↓
图 b 引力弹弓的示意图
感谢木星甘当人梯的奉献精神,地球获得了木星的轨道速度U,叠加上原有的速度V,速度增加到了U V。地球的速度和能量都增加了,却没有消耗任何燃料,就奔着新家园去了。
当地球靠近木星时,人类突然遭遇了巨大危机:数千台行星发动机故障熄火了,全球地震,火山爆发,岩浆吞没了地下城…… 这一切灾难的根源是“洛希极限”
“洛希极限”
如果地球越过木星的洛希极限距离时,木星的潮汐力就会把地球撕碎!在千钧一发时刻,人类靠点燃木星和地球氧气混合气体的方法,成功把地球推离危险轨道。
图注:地球的部分大气层已被木星的引力吸走。
在天体力学中,洛希极限又称洛希半径,最早由法国天文学家洛希提出,因此称为洛希极限。我们就拿地球接近木星作为特例简单说一下:地球的物质结合在一起的主要作用力是自身的重力,当地球靠近木星的时候,木星会对地球产生强烈的潮汐撕扯作用,当潮汐力超过地球自身物质的重力结合作用时,地球就会被撕裂。地球刚开始被撕裂时,离木星的距离就是洛希极限。
土星壮观的光环就位于土星的洛希极限内,光环中的物质无法靠自身的引力聚合成较大的天体。实际上,土星环可能就是由土星的一颗天然卫星越过洛希极限被撕裂形成的。当然也可能是土星形成时剩余的物质。还有一个有趣的例子,火星的卫星“火卫一”早晚会进入火星的洛希极限内,被火星撕裂,形成围绕火星的环状系统。科学家估计这个时间大约只有3000万年到5000万年。
流浪地球的目的地——比邻星
稍有天文常识的人都知道,距离太阳系最近的恒星是“比邻星”,只有4.2光年,4.2光年对于我们来说也是巨大的空间尺度了,要知道1光年大约等于9.5万亿公里。
图注:该图描绘了比邻星恒星系统中三颗恒星的关系,及在比邻星周围发现的一颗行星。
在太阳临近的5秒差距(大约16光年)内有52颗恒星,这些恒星都可以作为流浪地球最终的备选之地。例如,距离太阳12光年的Tau Ceti也许就是一个不错的选择,其亮度大概是太阳的一半,而且看起来非常稳定。这颗恒星目前已经被发现拥有5颗行星,其中一颗甚至可能有适宜的温度,可以支持液态水存在。
比邻星它是一个理想的新家园。最大的问题在于:比邻星过于暗淡,只有太阳质量的十分之一,勉强达到核心发生核聚变的标准。这样的恒星会展现出很大的不稳定性,表现在高频率的恒星耀斑爆发。太阳也会有耀斑爆发,在很短的时间里向宇宙空间释放大量能量,并且伴以大量的物质抛射。在耀斑强烈的时候,地球上的无线电通讯会受到其干扰,但不会对人类生活造成太大的影响。但在比邻星轨道,这种耀斑爆发有可能造成灾难性后果。这是因为比邻星太过暗淡,地球如果要想充分接收比邻星的能量,让冰冻的海洋融化,需要非常靠近比邻星,其轨道距离只有目前日地距离的1/20。一旦耀斑爆发,地球因为距离更近,也将受到更大的影响。在2018年,科学家观察到了比邻星一次超级耀斑爆发,从地球上观察,比邻星在耀斑爆发时亮度比起平时增加了68倍。地球如果泊入这样的恒星轨道,在耀斑爆发时,地球生态圈可能受到毁灭性打击。
电影中还有一些其他的科学细节,就不一一解析了。这部小说的成功主要还在于故事情节,太阳变成红巨星,人类带着世世代代生存的家园一起逃离,本身就是一件非常浪漫的事情。
本文来源腾讯科技,企鹅科学,科普中国。转载旨在分享,版权归原作者所有。责编:物理好教师。