人工智能技术神经网络(人工智能神经网络)
人工智能技术神经网络(人工智能神经网络)如果通过网络馈送的图像是苹果,并且网络已经进行了一些训练,且随着其预测而变得越来越好,那么很可能一个很好的特征图块就是包含了苹果特征的高质量实例。 这是最终输出节点实现使命的地方,反之亦然。现在是时候得出结果了。在完全连接层中,每个削减的或“池化的”特征图“完全连接”到表征了神经网络正在学习识别的事物的输出节点(神经元)上。 如果网络的任务是学习如何发现猫、狗、豚鼠和沙鼠,那么它将有四个输出节点。 在我们描述的神经网络中,它将只有两个输出节点:一个用于“苹果”,一个用于“橘子”。AI 的早期流派之一认为,如果您将尽可能多的信息加载到功能强大的计算机中,并尽可能多地提供方法来了解这些数据,那么计算机就应该能够“思考”。比如 IBM 著名的国际象棋 AI Deep Blue 背后就是这么一个思路:通过对棋子可能走出的每一步进行编程,再加上足够的算力,IBM 程序员创建了一台机器,理论上可以计算
现在谈人工智能已经绕不开“神经网络”这个词了。人造神经网络粗线条地模拟人脑,使得计算机能够从数据中学习。
机器学习这一强大的分支结束了 AI 的寒冬,迎来了人工智能的新时代。简而言之,神经网络可能是今天最具有根本颠覆性的技术。
看完这篇神经网络的指南,你也可以和别人聊聊深度学习了。为此,我们将尽量不用数学公式,而是尽可能用打比方的方法,再加一些动画来说明。
强力思考
AI 的早期流派之一认为,如果您将尽可能多的信息加载到功能强大的计算机中,并尽可能多地提供方法来了解这些数据,那么计算机就应该能够“思考”。比如 IBM 著名的国际象棋 AI Deep Blue 背后就是这么一个思路:通过对棋子可能走出的每一步进行编程,再加上足够的算力,IBM 程序员创建了一台机器,理论上可以计算出每一个可能的动作和结果,以此来击败对手。
通过这种计算,机器依赖于工程师精心预编程的固定规则——如果发生了 A,那么就会发生 B ; 如果发生了 C,就做 D——这并不是如人类一样的灵活学习。当然,它是强大的超级计算,但不是“思考”本身。
完全连接层
现在是时候得出结果了。在完全连接层中,每个削减的或“池化的”特征图“完全连接”到表征了神经网络正在学习识别的事物的输出节点(神经元)上。 如果网络的任务是学习如何发现猫、狗、豚鼠和沙鼠,那么它将有四个输出节点。 在我们描述的神经网络中,它将只有两个输出节点:一个用于“苹果”,一个用于“橘子”。
如果通过网络馈送的图像是苹果,并且网络已经进行了一些训练,且随着其预测而变得越来越好,那么很可能一个很好的特征图块就是包含了苹果特征的高质量实例。 这是最终输出节点实现使命的地方,反之亦然。
“苹果”和“橘子”节点的工作(他们在工作中学到的)基本上是为包含其各自水果的特征图“投票”。因此,“苹果”节点认为某图包含“苹果”特征越多,它给该特征图的投票就越多。两个节点都必须对每个特征图进行投票,无论它包含什么。所以在这种情况下,“橘子”节点不会向任何特征图投很多票,因为它们并不真正包含任何“橘子”的特征。最后,投出最多票数的节点(在本例中为“苹果”节点)可以被认为是网络的“答案”,尽管事实上可能不那么简单。
因为同一个网络正在寻找两个不同的东西——苹果和橘子——网络的最终输出以百分比表示。在这种情况下,我们假设网络在训练中表现已经有所下降了,所以这里的预测可能就是75%的“苹果”,25%的“橘子”。或者如果是在训练早期,可能会更加不正确,它可能是20%的“苹果”和80%的“橘子”。这可不妙。
如果一开始没成功,再试,再试…
所以,在早期阶段,神经网络可能会以百分比的形式给出一堆错误的答案。 20%的“苹果”和80%的“橘子”,预测显然是错误的,但由于这是使用标记的训练数据进行监督学习,所以网络能够通过称为“反向传播”的过程来进行系统调整。
避免用数学术语来说,反向传播将反馈发送到上一层的节点,告诉它答案差了多少。然后,该层再将反馈发送到上一层,再传到上一层,直到它回到卷积层,来进行调整,以帮助每个神经元在随后的图像在网络中传递时更好地识别数据。
这个过程一直反复进行,直到神经网络以更准确的方式识别图像中的苹果和橘子,最终以100%的正确率预测结果——尽管许多工程师认为85%是可以接受的。这时,神经网络已经准备好了,可以开始真正识别图片中的苹果了。
原文链接:https://techcrunch.com/2017/04/13/neural-networks-made-easy/