快捷搜索:  汽车  科技

高中数学三角恒等变换典型题(高考数学知识点)

高中数学三角恒等变换典型题(高考数学知识点)2、二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;1、一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;1、三角函数的化简常见的方法有切化弦、利用诱导公式、同角三角函数关系式及和、差、倍角公式进行转化求解.2、三角函数求值分为给值求值(条件求值)与给角求值,对条件求值问题要充分利用条件进行转化求解.三、三角函数式的化简要遵循“三看”原则

一、半角公式(不要求记忆)

高中数学三角恒等变换典型题(高考数学知识点)(1)

典型例题1:

高中数学三角恒等变换典型题(高考数学知识点)(2)

二、三角恒等变换的常见形式

三角恒等变换中常见的三种形式:一是化简;二是求值;三是三角恒等式的证明.

1、三角函数的化简常见的方法有切化弦、利用诱导公式、同角三角函数关系式及和、差、倍角公式进行转化求解.

2、三角函数求值分为给值求值(条件求值)与给角求值,对条件求值问题要充分利用条件进行转化求解.

三、三角函数式的化简要遵循“三看”原则

1、一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;

2、二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;

3、三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.

典型例题3:

高中数学三角恒等变换典型题(高考数学知识点)(3)

四、三角函数求值有三类

1、“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.

2、“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.

3、“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.

典型例题4:

高中数学三角恒等变换典型题(高考数学知识点)(4)

三角变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y=Asin(ωx+φ)的形式再研究性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.

典型例题5:

高中数学三角恒等变换典型题(高考数学知识点)(5)

高中数学三角恒等变换典型题(高考数学知识点)(6)

【作者:吴国平】

猜您喜欢: