高考数学转化与化归思想(高中数学思想转化与化归的思想归纳总结精析)
高考数学转化与化归思想(高中数学思想转化与化归的思想归纳总结精析)本文节选自高中数学归纳总结精析(4)出现更多的实际问题向数学模型的转化问题。(1)常量与变量的转化:如分离变量,求范围等。(2)数与形的互相转化:若解析几何中斜率、函数中的单调性等。(3)数学各分支的转化:函数与立体几何、向量与解析几何等的转化。
【高考展望】
解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“转化与化归的思想方法”
转化与化归思想在高考中占有相当重要的地位,可以说比比皆是,如未知向已知的转化、新知识向旧知识的转化、复杂问题向简单问题的转化、不同数学问题之间的互相转化、实际问题向数学问题转化等等.各种变换、具体解题方法都是转化的手段,转化的思想方法渗透到所有的数学教学内容和解题过程中.
高考对本讲的考查为:
(1)常量与变量的转化:如分离变量,求范围等。
(2)数与形的互相转化:若解析几何中斜率、函数中的单调性等。
(3)数学各分支的转化:函数与立体几何、向量与解析几何等的转化。
(4)出现更多的实际问题向数学模型的转化问题。
本文节选自高中数学归纳总结精析
更多内容