立体几何体的表面积与体积高考题:高考考纲与考向分析
立体几何体的表面积与体积高考题:高考考纲与考向分析2.柱体、锥体、台体体积公式间的关系1.柱体、锥体、台体的体积公式多面体的表面积就是各个面的面积之和,也就是展开图的面积.棱锥、棱台、棱柱的侧面积公式间的二、柱体、锥体、台体的体积
考纲原文了解球、棱柱、棱锥、台的表面积和体积的计算公式.
知识点详解一、柱体、锥体、台体的表面积
1.旋转体的表面积
2.多面体的表面积
多面体的表面积就是各个面的面积之和,也就是展开图的面积.
棱锥、棱台、棱柱的侧面积公式间的
二、柱体、锥体、台体的体积
1.柱体、锥体、台体的体积公式
2.柱体、锥体、台体体积公式间的关系
3.必记结论
(1)一个组合体的体积等于它的各部分体积之和或差;
(2)等底面面积且等高的两个同类几何体的体积相等.
三、球的表面积和体积
1.球的表面积和体积公式
2.球的切、接问题(常见结论)
考向分析考向一 柱体、锥体、台体的表面积
1.已知几何体的三视图求其表面积,一般是先根据三视图判断空间几何体的形状,再根据题目所给数据与几何体的表面积公式,求其表面积.
2.多面体的表面积是各个面的面积之和,组合体的表面积应注意重合部分的处理,以确保不重复、不遗漏.
3.求多面体的侧面积时,应对每一个侧面分别求解后再相加;求旋转体的侧面积时,一般要将旋转体展开为平面图形后再求面积.
考向二 柱体、锥体、台体的体积
空间几何体的体积是每年高考的热点之一,题型既有选择题、填空题,也有解答题,难度较小,属容易题. 求柱体、锥体、台体体积的一般方法有:
(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.
(2)若所给定的几何体的体积不能直接利用公式得出,则常用等体积法、割补法等方法进行求解.
①等体积法:一个几何体无论怎样转化,其体积总是不变的.如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解.等体积法也称等积转化或等积变形,它是通过选择合适的底面来求几何体体积的一种方法,多用来解决有关锥体的体积,特别是三棱锥的体积.
②割补法:运用割补法处理不规则的空间几何体或不易求解的空间几何体的体积计算问题,关键是能根据几何体中的线面关系合理选择截面进行切割或者补成规则的几何体.要弄清切割后或补形后的几何体的体积是否与原几何体的体积之间有明显的确定关系,如果是由几个规则的几何体堆积而成的,其体积就等于这几个规则的几何体的体积之和;如果是由一个规则的几何体挖去几个规则的几何体而形成的,其体积就等于这个规则的几何体的体积减去被挖去的几个几何体的体积.因此,从一定意义上说,用割补法求几何体的体积,就是求体积的“加、减”法.
(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.
考向三 球的表面积和体积
1.确定一个球的条件是球心和球的半径,已知球的半径可以利用公式求球的表面积和体积;反之,已知球的体积或表面积也可以求其半径.
2.球与几种特殊几何体的关系:(1)长方体内接于球,则球的直径是长方体的体对角线长;(2)正四面体的外接球与内切球的球心重合,且半径之比为3∶1;(3)直棱柱的外接球:找出直棱柱的外接圆柱,圆柱的外接球就是所求直棱柱的外接球.特别地,直三棱柱的外接球的球心是上、下底面三角形外心连线的中点;(4)球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径;(5)球与圆台的底面和侧面均相切,则球的直径等于圆台的高.
3.与球有关的实际应用题一般涉及水的容积问题,解题的关键是明确球的体积与水的容积之间的关系,正确建立等量关系.
考向四 空间几何体表面积和体积的最值
求解空间几何体表面积和体积的最值问题有两个思路:
一是根据几何体的结构特征和体积、表面积的计算公式,将体积或表面积的最值转化为平面图形中的有关最值,根据平面图形的有关结论直接进行判断;
二是利用基本不等式或是建立关于表面积和体积的函数关系式,然后利用函数的方法或者利用导数方法解决.
【名师点睛】
涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.先确定三角形BCD外接圆的半径,再解方程得外接球半径,最后根据球的体积公式得结果.