快捷搜索:  汽车  科技

微积分导数的概念常用公式:微积分中求导公式

微积分导数的概念常用公式:微积分中求导公式若是负分数指数幂,则有要用商的求导公式推导。若是正分数指数幂,则有要用复合函数的求导法则推导。一、先是最简单的幂的导数公式推导:指数为正整数时,直接用定义推导。指数为负整数时,要依据商的导数公式推导。

微积分中求导公式,级数展开式的推导及应用(彭彤彬)

本文简介:

下面的推导基于导数定义,求导法则,积分概念与法则,级数展开式的收敛等知识,得到了微积分中所有的求导公式,各基本函数的多项式展开式,并用来得出了一些无理数或超越数如带根号的数,对数值,e,π等精确值的表达式。

内容:

一、先是最简单的幂的导数公式推导:

指数为正整数时,直接用定义推导。

微积分导数的概念常用公式:微积分中求导公式(1)

指数为负整数时,要依据商的导数公式推导。

微积分导数的概念常用公式:微积分中求导公式(2)

若是正分数指数幂,则有要用复合函数的求导法则推导。

微积分导数的概念常用公式:微积分中求导公式(3)

若是负分数指数幂,则有要用商的求导公式推导。

微积分导数的概念常用公式:微积分中求导公式(4)

微积分导数的概念常用公式:微积分中求导公式(5)

微积分导数的概念常用公式:微积分中求导公式(6)

指数为包含无理数的实数时,则需用对数函数求导公式(推导见后),复合函数求导法则来推导。

微积分导数的概念常用公式:微积分中求导公式(7)

以上是幂函数的求导公式的完整推导。

二、指数函数,对数函数,三角函数的求导公式的推导。按推导顺序一步步呈现如下。

微积分导数的概念常用公式:微积分中求导公式(8)

由上面的推导可知e的重要性,没有e的定义,第一个不是多项式的自然对数的导数就求不出来,从而后面的导数公式的推导就不能进行下去。

微积分导数的概念常用公式:微积分中求导公式(9)

有了e的定义后,虽说暂时我们不知道e的精确值是多少,但我们可以推出自然对数,以e为底数的指数函数的导数,见上。

由此,结合指数及对数的运算性质及复合函数求导法则,可得到任意指数函数与对数函数的求导公式。见下:

微积分导数的概念常用公式:微积分中求导公式(10)

为进一步开展以后推导,我们需要先由三角形函数定义及有关知识,推导出一个重要的极限值:当自变量趋向于0时,正弦函数与其自变量比值的极限为1。

微积分导数的概念常用公式:微积分中求导公式(11)

有了上述重要极限,我们用复数运算,求导,积分等基本定义和运算法则,就可推导出e的ix次方与cosx,sinx之间的关系式,从而得出几个重要常数0,1,i,e,π之间的著名关系式e的iπ次方与1的和为0。

具体过程见下:

微积分导数的概念常用公式:微积分中求导公式(12)

微积分导数的概念常用公式:微积分中求导公式(13)

有了上述关系式:

e^(ix)=cosx+isinx,

我们就可用指数及运算表示三角函数,从而利用前面推出的指数函数求导法则,可推导出三角函数的求导公式。

具体见下:

微积分导数的概念常用公式:微积分中求导公式(14)

微积分导数的概念常用公式:微积分中求导公式(15)

可以看出,三角形函数求导公式简单明了。

三、下面是反正弦、反余弦、反正切的求导公式推导。

微积分导数的概念常用公式:微积分中求导公式(16)

微积分导数的概念常用公式:微积分中求导公式(17)

微积分导数的概念常用公式:微积分中求导公式(18)

四、我们就想,指数函数,对数函数,三角函数,反三角函数它们能否表示成多项式的形式?若能,分别是什么样的?

我们先考虑以e为底数的指数函数分解成多项式,是个什么情况,能得到什么结论。

微积分导数的概念常用公式:微积分中求导公式(19)

微积分导数的概念常用公式:微积分中求导公式(20)

可以看出,e的x次方,展开成多项式形式时,含有无数多项和。

由此,令x=1,我们得出了e的精确值表达式。

利用这个表达式,可以求出e的精确到小数后任意位的近似值。

例如:求e的近似值的误差估计

其中100!,200!值利用手机中的科学计算器算得。

微积分导数的概念常用公式:微积分中求导公式(21)

微积分导数的概念常用公式:微积分中求导公式(22)

由这个式子可知,e不能表示为一个分数形式(若将后部带省略号的一部分去掉,就可以通分变成一个分数即有理数,而这只是e的近似值),从而知它一定是一个无理数。

有了e^x的多项式展开式,结合e^x=cosx+isinx,马上就可以很容易推导出三角函数的多项式展开式。

见下:

微积分导数的概念常用公式:微积分中求导公式(23)

对数函数的多项式展开式是什么?

微积分导数的概念常用公式:微积分中求导公式(24)

微积分导数的概念常用公式:微积分中求导公式(25)

幂函数的多项式展开式及应用求带根号数的值。

微积分导数的概念常用公式:微积分中求导公式(26)

微积分导数的概念常用公式:微积分中求导公式(27)

微积分导数的概念常用公式:微积分中求导公式(28)

微积分导数的概念常用公式:微积分中求导公式(29)

下面是反正弦、反余弦、反正切的级数展开式及应用来求圆周率π值的精确表达式。

微积分导数的概念常用公式:微积分中求导公式(30)

微积分导数的概念常用公式:微积分中求导公式(31)

微积分导数的概念常用公式:微积分中求导公式(32)

微积分导数的概念常用公式:微积分中求导公式(33)

微积分导数的概念常用公式:微积分中求导公式(34)

微积分导数的概念常用公式:微积分中求导公式(35)

微积分导数的概念常用公式:微积分中求导公式(36)

猜您喜欢: