商业数据分析师技巧(什么是商业数据分析师)
商业数据分析师技巧(什么是商业数据分析师)因为你再努力工作,你还是一个点。一个月或一年的工资,只是一个点的努力成果。但是腾讯股票与北上广房子的收益,是因为这个点附着于一个快速崛起的经济体,这是一个线性周期的结果。对于做投资来说,你需要首先选择某个正在崛起的大型经济体,接着去找一个领域,投它的成长周期。所以你会发现很多投资人,会投资一个赛道上所有的产业。为什么呢?因为他不赌单点,而是整个周期的收益。为什么?这里不是说双胞胎的素质或者能力有多大差异,也不是说他们分别跟随的领导的能力或者个人操守有问题。敲黑板!!!核心问题是——这两个单位所附着的经济体,一个在快速崛起,一个在快速崩溃。这就是我们要谈的点线面体。其实我们都有体会,努力工作的工资收益,远远不如2013年以前买了腾讯的股票,或者2010年以前买了北上广的房子。
前言背景现在显然已经是数据智能时代了,传统商业和智能商业的本质区别可以用一个字来概括:“活的闭环”。数据是“活”的,用户的每一次行为 都转化为新的数据汇入数据的大海,而每一个新数据的汇入都实时引发各个数据集的连锁反应;算法是“活”的,用户对产品、服务的每一 次体验,都成为算法迭代成长的养分,使算法越来越聪明地反映商业本质;反馈闭环是“活”的,在其中, 产品在迭代,数据在流动,算法 在成长;最终,我们所熟悉的工业时代的机械逻辑——预先设定一切——将被彻底颠覆,取而代之的将会是一个全新的商业生态系统和商业形态。
1.点线面体的思维模式用一个例子开篇
举个例子:
有一对双胞胎,在2011年一起大学毕业,一个加入腾讯,一个进入报社。7年之后,去腾讯的那位已经是年薪百万,而且满街都是挖他的猎头。投资人也在挖他,只要出来创业就给钱。去报社的那位,因为报社沉沦了,他曾经寄托理想的整个产业都没有了,一切都需要重来。
这里不是说双胞胎的素质或者能力有多大差异,也不是说他们分别跟随的领导的能力或者个人操守有问题。
敲黑板!!!核心问题是——这两个单位所附着的经济体,一个在快速崛起,一个在快速崩溃。
这就是我们要谈的点线面体。其实我们都有体会,努力工作的工资收益,远远不如2013年以前买了腾讯的股票,或者2010年以前买了北上广的房子。
为什么?
因为你再努力工作,你还是一个点。一个月或一年的工资,只是一个点的努力成果。但是腾讯股票与北上广房子的收益,是因为这个点附着于一个快速崛起的经济体,这是一个线性周期的结果。对于做投资来说,你需要首先选择某个正在崛起的大型经济体,接着去找一个领域,投它的成长周期。所以你会发现很多投资人,会投资一个赛道上所有的产业。为什么呢?因为他不赌单点,而是整个周期的收益。
有一个经典的悲催人生警示:
悲催的人生,就是在一个常态的面上,做一个勤奋的点。
更悲催的人生,就是在一个看上去常态的面上,做一个勤奋的点,你每天都在想着未来,但其实这个面正在下沉。
最悲催的人生,就是在一个看上去常态的面上,做一个勤奋的点,其实这个面附着的经济体正在下沉。
上面就是我以这个案例给大家开篇的目的所在,在社会大环境下要找准自己的定位,顺势而为,及时做出改变。
2.DT时代许多互联网大拿都说过,我们现在所处的时代是:ABC=DT时代
从移动互联网时代迈入数据技术时代,数据技术造就了优秀的互联网公司,如阿里、头条。人工智能尝试应用多个领域,如无人驾驶、无人机、医疗诊断等。区块链和虚拟货币的大火背后也是数据技术的驱动。可以说数据技术给很多公司带来以往达不到的增长收益。
3.商业数据分析师:从BI到AIBI(Business Intelligence)即商务智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确地提供报表并提出决策依据,帮助企业做出明智的业务经营决策。而随着深度学习技术的突破,人工智能的发展又能更进一步。在海量数据的今天,传统方法已经难以支撑企业的正常需求,现在很多数据达到了PB级。这么海量的数据需要更强大的计算资源,需要强大的挖掘算法等才能给我们挖掘出更多的价值。
自动化打开效率之门
借助BI,用户可以访问大量数据,但必须提出适当的问题才能获得正确的洞察。对于没有BI经验的用户来说,这证明是有问题的,他们可能不知道什么样的请求会得到最有价值的信息。AI是打破这一门槛的关键,它可以有效消除预先确定问题的需要。AI中的自动化功能让计算机能够通过确定数据点之间的关系,处理BI数据分析,以生成相关洞察,甚至是用户不知道的必要洞察。发现这些关键业务关系后,解决方案会自动生成仪表板,形象地呈现发现的问题。
以制造业为例,AI和BI可以帮助追踪之前的机器故障,并收集导致这些故障的详细信息,例如繁重的工作流程或机器老化。然后这些信息可以应用到现有机器上,机器根据类似的情况,当需要维护时自动发出警报。最终,制造商将能够防患于未然,降低维修时间和成本,最终提高效率。
AI和BI结合使用,实现更高准确性
结合使用AI和BI不仅可以让更多人能够使用这些解决方案,还可以增加可被分析的数据量。机器学习技术分析大数据集的速度比人类更快,这让每次决策能够考虑更多信息,同时减少检查这些信息的时间,最终提高使用BI的效率和准确性。
这在零售业尤其有效,特别是传统企业,由于当今电商巨头的出现,它们正在经历巨大的变化。传统零售商必须采用智能技术才能保持领先,通过结合AI和BI,零售商可以根据过去六年(而不是过去六个月)的销售量数据做出库存决策。这会让零售商更准确地了解消费者偏好,保证在正确的时间提供正确的产品,从而在每次决策时都能将消费者摆在重要位置。
下面用思维导图的方式展现给大家-从BI到AI过度的过程中会经历哪几个阶段,分别有哪些特点。
上面这张图从BI到AI发展的过程会遇到的四个阶段,以及各个阶段的业务要求,阶段特点。希望通过他,大家对BI到AI发展的原因和会遇到的一些瓶颈有所理解了。
4.我该如何成为商业数据分析师呢?商业数据分析师要做什么?
商业分析师负责利用数据分析将IT技术和商业联系起来,通过数据分析帮助企业优化生产流程,产品,服务和软件,评估生产流程,确定产品需求并向管理层和投资者提供数据驱动的建议和报告。
敏锐的分析师们填补了技术与商业之间的鸿沟,提高生产效率并实现技术的商业价值。
国际商业分析协会(IIBA),定义商业分析师是“变革的推动者”,他们认为商业分析“是一种为组织引入和管理变革的规范方法,无论他们是营利性企业,政府或非营利组织。“
商业分析师需要兼具硬软技能。商业分析师需要知道如何获取,分析和报告数据趋势,并能够与其他人分享这些信息并将其运用于商业之中。并非所有的商业分析师都需要IT方面的背景知识,只要他们对信息系统,产品和工具的工作方式有一个基础的了解即可。另外,还有一些商业分析师是具有强大的IT背景但较少的商业经验,他们也有兴趣从IT技术岗位转型到这种混合角色
作为一个合格的商业分析师,我们需要什么能力?
1.统计相关的数学知识
2.数据特征分析
3.数据处理方法
4.数据建模
5.数据可视化工具和方法
6.业务分析方法
而作为数据分析的硬核技能,我们有需要掌握一些处理数据的工具,包括一些统计学的方法,并会建模分析,能够做预测分析,再结合商业分析的方法和业务的一些情况,我们才能做的更好。
作为一名数据分析师,如果你能够站在业务领导的高度,主动的思考问题并提出解决方案,有很好的表达技巧说服业务人员接受你的观点,并能够全程推动和监控方案的落地实施,那么你一定能够通过数据来推动业务的持续发展。这几点看似很难,但只要你能够明确方向,一点一点的推进,你一定会惊喜的发现,原来通过数据影响业务并没有那么困难,随着业务对于数据依赖的不断加强,你的价值也会不断凸显,升职加薪自然水到渠成。
以后会和大家慢慢分享商业数据分析的技能与业务方法,期待您的关注!