快捷搜索:  汽车  科技

数据分析零基础快速入门(写给数据分析入门者)

数据分析零基础快速入门(写给数据分析入门者)数据分析不是模型算法和可视化的堆砌,而是有目的地发现某种现象,支撑某些决策。所以在分析之前,一定要明确自己分析的目的,切忌照搬其他的项目的分析内容,或者随意组合手上的分析模型算法,这样会导致分析结果华而不实。要想达到某种分析目的,需要从多个视角观察数据,这样不仅可以对数据整体有个全面的了解,也有助于发现潜在的信息。例如当我们需要找出潜在的会员的时候,最直接的当然是消费比较多但还不是会员的人。但从促销活动的角度看,那些热衷购买打折商品的人很大概率也是潜在的会员,因为加入会员他们会获得更多的折扣,这是他们希望的。同时,从推荐系统的角度看,那些对推荐系统推荐的商品满意的人,也不太会拒绝你推荐他加入会员。以上介绍的,是数据分析中的一个常规思路和可以用到的一些常规的方法。希望对读者有所帮助,同时,不恰当的地方,也烦请批评指导。最后再次强调,数据分析不是算法与可视化的堆砌,需要我们对业务深入的了解。

文:暮之雪源:CSDN博客

数据分析是一个庞大的工程,有的时候过于抽象且依赖经验。本文是笔者对学习和实践数据分析的一个总结,希望提供一种通用的数据分析思路,并在分析思路的每个步骤中介绍相关的分析算法及其应用场景,对于算法只做浅层次的介绍,待读者在实际使用中自行深入了解。

本文主要针对刚刚接触数据分析或者面对一堆数据不知道如何下手的读者,经验丰富的数据分析师们可以跳过。同时,本文介绍的分析思路由于笔者的经验和知识有一定的局限性,希望读者在分析中合理参考。

在进行数据分析之前,首先应该做好以下准备:

一、熟悉业务、了解数据来源

这一点是数据分析的前提。数据分析,除了我们面对的数据之外,更多的是这些数据背后隐藏的各种业务。例如当我们看到用户的消费记录时,它可能不仅仅是收银系统购买商品,还包含了为了会员系统的满减而做的凑单,活动管理系统的开业折扣商品,或者是推荐系统的推荐商品。对于业务深入的了解,有助于更好的发现分析的维度,快速锁定问题和原因。

二、明确分析的目的

数据分析不是模型算法和可视化的堆砌,而是有目的地发现某种现象,支撑某些决策。所以在分析之前,一定要明确自己分析的目的,切忌照搬其他的项目的分析内容,或者随意组合手上的分析模型算法,这样会导致分析结果华而不实。

三、多视角观察

要想达到某种分析目的,需要从多个视角观察数据,这样不仅可以对数据整体有个全面的了解,也有助于发现潜在的信息。例如当我们需要找出潜在的会员的时候,最直接的当然是消费比较多但还不是会员的人。但从促销活动的角度看,那些热衷购买打折商品的人很大概率也是潜在的会员,因为加入会员他们会获得更多的折扣,这是他们希望的。同时,从推荐系统的角度看,那些对推荐系统推荐的商品满意的人,也不太会拒绝你推荐他加入会员。

数据分析零基础快速入门(写给数据分析入门者)(1)

数据分析零基础快速入门(写给数据分析入门者)(2)

以上介绍的,是数据分析中的一个常规思路和可以用到的一些常规的方法。希望对读者有所帮助,同时,不恰当的地方,也烦请批评指导。最后再次强调,数据分析不是算法与可视化的堆砌,需要我们对业务深入的了解。

猜您喜欢: