快捷搜索:  汽车  科技

数据分析正确打开方式:数据驱动增长之四步进阶法

数据分析正确打开方式:数据驱动增长之四步进阶法没头绪的数据分析要像技术排查一样做穷举,进行探索式分析 此时,企业数据采集的完备性对分析的效率和结果具有重要影响。没头绪的数据分析,一般为探索式 要基于数据可能性做试探,效率低,容易上手,分析逻辑如下图:有头绪的数据分析,一般为验证式,依靠业务和分析经验,效率高,但可能忽略其他因素,分析逻辑如下图:一般情况下,有头绪的数据分析已关联了23种原因假设,其中的1个关键影响因素可能影响数据下降或上升70%-80%,通过原因假设的数据表现及对应的数据细分维度层层分析,会非常高效的找到问题答案。(2)没头绪—探索式

结合业务的数据分析,基本上可概括为3个较常见的场景。

场景一:异常情况找原因

异常情况找原因是常见的分析场景,主要是确认数据变化受什么影响,大体可分为2个分析方向:有头绪和没头绪。

(1)有头绪—验证式

有头绪的数据分析,一般为验证式,依靠业务和分析经验,效率高,但可能忽略其他因素,分析逻辑如下图:

一般情况下,有头绪的数据分析已关联了23种原因假设,其中的1个关键影响因素可能影响数据下降或上升70%-80%,通过原因假设的数据表现及对应的数据细分维度层层分析,会非常高效的找到问题答案。

(2)没头绪—探索式

没头绪的数据分析,一般为探索式 要基于数据可能性做试探,效率低,容易上手,分析逻辑如下图:

没头绪的数据分析要像技术排查一样做穷举,进行探索式分析 此时,企业数据采集的完备性对分析的效率和结果具有重要影响。

探索式分析方法比较低效,因此数据分析师需要培养自己的业务感知,积累自身经验提高判断力,尽量采用验证式分析方法。

场景二:业务迭代的效果评估

业务选代评估效果的分析逻辑相对固定,一般为了解业务原始状态,采取的改动措施及采集的相关衡量指标数据,再根据指标变化趋势分析优化效果。以下,为业务选代评估效果的三个评估诊断原则:

其一,指标准确全面,即业务意义准确,核心维度全面;

其二,数据可比性强,即保证两组分析的数据本身具备可比较性,如用户结构相同,外部环境不变,保证两组数据之间唯一的干预因子为实验方案;

其三,分析逻辑清晰,即分析思路清晰、分析模型科学。

(1)数据驱动的选代全景图

企业不仅要通过数据分析明确数据变化的成因,还有从中找到破局点因此,企业首先要明确业务的增长目标,再聚焦目标做全方位分析诊断,从中发现解决方案或思路,进行优化选代,最后形成开发上线、效果评估、优化方案的闭环,如下为数据驱动的选代全景图:

数据分析正确打开方式:数据驱动增长之四步进阶法(1)

(2)如何寻找增长点?

企业寻找业务增长点分为三步:打蛇打七寸,明确第一关键指标;构建增长模型,定位增长点;结合业务场景,确定具体动作方案。

① 明确第一关键指标

企业可以从两个维度找到第一关键指标:

其一,业务模式企业首先需要洞察产品或业务给用户提供的真正价值,以此构建价值模型,明确量化指标,同时,还需要明确企业的主要业务在频率与价格上现的特征趋势,因为这很大程度上决定了数据运作的上限。

比如,关于企业提升用户留存,如果企业本身产品的使用频次,与其能够为用户提供的价值受到限制,不管企业付出多少努力,也很难实现长期留存。因此,数据表现由业务模式决定,不同的业务模式存在不同的天花板。

其二,AARRR,即在业务模式既定的情况下,各环节的数据表现与其承接的结构能力,是企业判定第一关键指标或增长目标的重要影响因素。

② 构建增长模型

拆解第一关键指标,可构建出相应的增长模型,如常见的GMV的拆分等。根据增长模型可清晰的定位增长点。

③ 业务场景

企业可从几个关联的业务场景出发设定具体动作方案提升业务场景的数据表现,最终提升增长模型中的核心杠杆率,从而促进第一指标的提升。该寻找业务增长突破点的思路,可概括为下图:

数据分析正确打开方式:数据驱动增长之四步进阶法(2)

(3)如何寻找解决方案?

寻找解决方案的分析思路共分为5步:明确业务场景;构建指标体系;深入特征挖掘;深层原因分析;确定解决方案。

① 明确业务场景

常见的业务场景有:新用户全流程、核心主流程、页面流量分发、搜索、促销活动老拉新等在数据分析时,首先需明确关键业务场景,如新用户全流程分析,分析师需要确定用户旅程中不同节点的里程碑,再根据里程碑中的激励策略,业务转化能力进行指标体系的设计,来评估整个环节的效果。

② 指标体系

一般指标体系的构建可分为四类,量级指标、效率指标、结构指标、细分维度。

③ 特征挖掘

特征挖掘一般包括规模特征、趋势特征、过程特征、结构特征及异常点的挖掘特征挖掘的分析过程需要看数据全局,再下钻分析各个细分维度,高亮出异常或特殊的数据,再进行原因分析。

④ 原因分析

原因分析可结合模式/阶段、业务大动作、功能流程设计、运营活动上线、营销投放等方面进行分析,这些因素均有可能引起数据的变化。

⑤ 解决方案

在确定业务的解决方案时,往往不是一而就的可以先确定优化方向,再进行进一步的分析,继而确定优化方案,如果需要优化的点较多,还需要确定优化优先级。

如下图,为寻找解决方案的思路概括。

数据分析正确打开方式:数据驱动增长之四步进阶法(3)

应用数据:怎么用?有什么价值?

从通道、粒度、时效性划分数据应用,可以构建一张数据应用全景图,如下:

数据分析正确打开方式:数据驱动增长之四步进阶法(4)

  • 粒度:指可具体到群体还是精准化个人,如其可决定一个因子是用规则类的分层,还是精细到个人的推荐算法;
  • 通道:指在产品内,还是产品外,决定了其对应的应用场景是什么产品内的通道比如广告资源位item栏日列表等;产品外的通道如短信、push、电销、广告等。
  • 时效性:包含数据本身和数据分析的时效性等,在数据应用中极其关键,特别是个性化推荐略更需要实时在线、个性化的千人千面展示。

(1)差异化展示:基于分发效率提升体验和业绩

从数据应用的真实场景来看,众多大数据分析产品其逻辑基本上通过业务属性、用户属性或行为特征数据提炼筛选人群分组标签,再根据人群分组标签匹配对应的方案或内容库,继而根据规则进行是否展示和展示顺序的判断进行个性化推荐,以达到提升体验、分发效率、业绩等目标。

不同产品的差别往往只在于实现这套体系时的内容供给类型与时效性,这很大程度决定了实现需求本身的成本大小。

(2)个性化展示:产品内个性化推荐实现原理

推荐系统中数据是非常关键的元素,比如需要组织训练数据进行模型训练;计算用户特征进行用户线上预测;内容元数据进行智能推荐等。

(3)差异化触达营销:精准名单输出,匹配营销渠道,推动目标达成

通过用户行为分析及行为特征进行用户分群,输出精准名单,然后匹配规则策略对接不同的通道/营销系统,进行发短信/发Push,亦或是发券/发红包的触达等,这是产品外的一种营销机制,其最终的结果是目标转化。

在该场景中,对接的系统策略与时效性需结合业务实际需求来评估。比如,很多相对低频的业务可能一个月并未累计几条数据,极少量的数据从算法或规则策略运行上来说,其数据质量很差,根本达不到决定策略更新的层级,其更新时间可做到T 30便已很好。

(4)价值实现和资源投入的矛盾

很多公司花较高的成本做应用数据团队的搭建但最终的产出却相差无几,这是源于价值感知与资源投入不是正比关系,还需结合其他因素考量,如下图。

数据分析正确打开方式:数据驱动增长之四步进阶法(5)

猜您喜欢: