嵌入式系统程序开发过程(嵌入方法在推荐系统中的应用)
嵌入式系统程序开发过程(嵌入方法在推荐系统中的应用)词嵌入方法最早在自然语言处理领域得到大规模的使用(见参考文献1、2、3、4),可以通过学习词的低维向量表示,用于解决词的句法和语义相关的NLP问题,如词性标注、关键词提取、句子相似度等等,并且取得了非常好的效果。这种嵌入技术吸引了很多其他领域的研究者进行尝试用于更多的业务场景,如搜索(参考文献11、21)、推荐等,并取得了很好的效果。本文我们主要讲解嵌入方法在推荐系统上的应用,上面提到的矩阵分解和Word2Vec两类算法是推荐嵌入方法的核心思想来源,下面讲到的很多嵌入方法思路都来源于此。 本文会从嵌入方法简介、嵌入方法应用于推荐系统的一般思路、几种用于推荐系统的嵌入方法的算法原理介绍、嵌入方法在推荐系统中的应用案例介绍、利用嵌入方法解决冷启动等5部分来讲解嵌入方法。希望通过本文的学习读者可以很好地理解嵌入方法的思想、原理、价值以及典型的嵌入方法在推荐系统上的应用,最终能够将嵌入方法应用到具
作者在《矩阵分解推荐算法》这篇文章中提到,矩阵分解算法是一类嵌入方法,通过将用户行为矩阵分解为用户特征矩阵和标的物特征矩阵的乘积,最终将用户和标的物嵌入到低维空间中,通过用户特征向量和标的物特征向量的内积来计算用户对标的物的偏好。
Word2Vec也是一类嵌入方法,通过构建双层神经网络模型,将词嵌入到低维向量空间,词向量保持了词的句法和语义关系,可以解决各类语言学问题。自从2013年Google发明Word2Vec算法后,Worde2Vec在机器学习领域得到大规模采用,在NLP、推荐、搜索等领域产生了深远的影响。
本文我们主要讲解嵌入方法在推荐系统上的应用,上面提到的矩阵分解和Word2Vec两类算法是推荐嵌入方法的核心思想来源,下面讲到的很多嵌入方法思路都来源于此。
本文会从嵌入方法简介、嵌入方法应用于推荐系统的一般思路、几种用于推荐系统的嵌入方法的算法原理介绍、嵌入方法在推荐系统中的应用案例介绍、利用嵌入方法解决冷启动等5部分来讲解嵌入方法。希望通过本文的学习读者可以很好地理解嵌入方法的思想、原理、价值以及典型的嵌入方法在推荐系统上的应用,最终能够将嵌入方法应用到具体的推荐业务上。
词嵌入方法最早在自然语言处理领域得到大规模的使用(见参考文献1、2、3、4),可以通过学习词的低维向量表示,用于解决词的句法和语义相关的NLP问题,如词性标注、关键词提取、句子相似度等等,并且取得了非常好的效果。这种嵌入技术吸引了很多其他领域的研究者进行尝试用于更多的业务场景,如搜索(参考文献11、21)、推荐等,并取得了很好的效果。
熟悉深度学习的读者肯定知道,深度学习模型隐含层的向量可以作为一种生成嵌入表示的方法。自编码器和表示学习的一些方法和技术可以很好地用作嵌入,随着深度学习的发展壮大,嵌入方法得到大量使用。Word2Vec本身也是一种浅层的神经网络模型。
嵌入方法有很强的数学背景,在数学领域大量采用,几何学中有所谓的嵌入存在定理,像PCA分析本质上是一种高维空间到低维空间的嵌入。在数学上有所谓的射影几何学,研究的就是图形的射影性质,即它们经过射影变换后,依然保持不变的图形性质。可以说从高维空间到低维空间的任何一种映射其实就是一种嵌入。
在这里,我给嵌入方法一个很形式化的数学定义,让读者更好理解。假设
是n维空间中的一个二元组,S是由向量组成的集合,F是S中元素满足的某种关系。那么嵌入方法就是需要我们找到一个映射:
,使得
在