训练完必须拉伸么(训练后需要拉伸吗)
训练完必须拉伸么(训练后需要拉伸吗)例如Sheard等人2010年[201]观察到,使用1RM的65%负荷进行拉伸,柔韧性的提高效果最大化;其他研究者[199,201]发现:如果拉伸使用了更多的负荷,实质上也就成了力量训练(的离心阶段)。注意,本文所指的拉伸,如果不加说明,都是指 “训练后的静态拉伸”。对于力量训练和拉伸在性质上的关系,其实已有一些探索和思考。有些研究者认为,完整动作幅度的力量训练实质上就是一种更高强度的拉伸[88]。
作者:肉崽
本文原创,禁止转载及搬运,否则将追究法律责任!
前言
大家好。
拉伸话题在市面上争议较大,所以我们列出了大量证据和文献。尽量精简后,全文依旧过万字,文献三百多个,大家阅读辛苦了,这是本系列近期的最后一篇。
注意,本文所指的拉伸,如果不加说明,都是指 “训练后的静态拉伸”。
拉伸不重要,因为我们已经做很多力量训练了
对于力量训练和拉伸在性质上的关系,其实已有一些探索和思考。
有些研究者认为,完整动作幅度的力量训练实质上就是一种更高强度的拉伸[88]。
其他研究者[199,201]发现:如果拉伸使用了更多的负荷,实质上也就成了力量训练(的离心阶段)。
例如Sheard等人2010年[201]观察到,使用1RM的65%负荷进行拉伸,柔韧性的提高效果最大化;
Swank等人[199]报告,只要在静态拉伸中增加重量,就能更好的增加柔韧性。
还有其他一些研究也证明了类似观点,例如下面的2个。
Ioannis等人2016
该研究目的是确定6个月的力训和脱训会对老年人带来什么影响。
为此,研究者将58名老年人随机分为高、中、低阻力力训组和对照组[104]。他们只做力量训练不做任何柔韧性训练。
在持续24周(每周3天)的训练后,有趣的发现来了:
(1)所有三个力训组的老人的柔韧性都提高了
(2)力训重量越大,柔韧性提高越多
(3)停训后,力训重量越大的组,柔韧性损失越少
原文结论:
力量训练本身提高了老年人的柔韧性;重量在1RM60%以上时能更有效。
Sam等人2011
该研究是为了确认力训与拉伸对柔韧性的效果对比。
研究共使用了37名受试者,其中25人随机分到力训组或拉伸组,12人为对照组[88]。
结果显示如下:
对于各关节柔韧性的增加效果而言,力量训练可能比拉伸更好。
为何做了很多力训就不需要再拉伸了?
因为:
1、力训离心阶段和静态拉伸,在原理上有许多相似之处
2、静态拉伸实质上相当于强度更小、持续时间更长的力训离心阶段
3、力训离心阶段也可被理解为强度更大、持续时间更短的静态拉伸
如此就解释了,为什么只力训不拉伸,不但不会 “肌肉僵硬/紧张” ,反而能很好的增加柔韧性[88,103,104,105,106,110,111,112,113,114,197,199]、只力训至少不会拖柔韧性后腿[115,117,118,197]。
这也解释了,为什么Sheard等人、Swank等人发现,只要在静态拉伸中增加足够的重量,就会很好的[199]、甚至是最大化的[201]增加柔韧性。
这还解释了,为什么Morton等人在研究中[88]总结道:对于那些进行力量训练的人来说,力量训练也可以提高柔韧性,可能没有理由再进行进行额外的拉伸类活动。
拉伸与力训到底有哪些性质上的相似性?
下面我们列举几个方面。
相似性一:都以强度/量/动作幅度为核心
有经验的训练者都知道,力量训练中,最重要的要素就是强度和训练量[244,245,290,291],其他要素相对次要。
拉伸也是类似的情况,拉伸的核心要素包括拉伸强度[88,104,287,294,295,306,308,309,310,311,312,313,314]、拉伸的容量/持续时间[130,204,288,289,296]、行程[286]等。
有趣的是,拉伸与力训一样,也存在 “收益递减” 的现象,有些研究发现,360和3150秒的拉伸产生类似的效果[251,252,253]。
原因可能是因为肌肉、肌腱中的结缔组织和胶原蛋白等负责维持一定的结构强度[193,246,247,248,249,253]。
相似性二:都具有保护肌肉的作用
众所周知,力训离心过程造成肌肉损伤[193],进而可以引发包括细胞膜/细胞骨架损伤、细胞器官破坏、钙离子稳态丧失、炎症、水肿、氧化应激等反应[266,267,268,269]。
这些情形导致运动后的延迟性酸疼、力量和活动能力部分下降等[261,262,263,264]等,甚至在意外情况下可以是拉伤[194,195,196]。
力量训练能让身体产生适应性强化,肌肉-肌腱的韧性提高,在下一次训练后免受创伤[274,275,276,277],以及减少训练后的暂时性力量下降、延迟性酸疼、血清肌酸激酶(CK)增加[274,275,278]、或是避免肌肉劳损等[192,257]。
跟人类一样,经历了力量训练后的动物在后面的训练中显得 “更结实”,动物的肌纤维损伤、暂时力量下降都减少了[279,280,281,302]。
Koh等人的研究[302]得出,在进行一节总次数为75次的肌肉训练课之前,如果预先进行了等长训练,则之后的课程中肌肉损伤减轻,但对照组动物则享受不到这种保护效果。
注意,被动拉伸也可产生上述对肌肉的保护效应[282,283]。在汤米等人的研究中[300],在训练前经历了一段时间静态收缩和被动拉伸的大鼠,在再次进行训练时,肌肉损伤明显减少。
练前一段日子的拉伸能保护肌肉的原因,被认为与中性粒细胞有关。
我们在之前的增肌原理的文章中提到过,肌肉损伤后,身体会释放一些中性粒细胞,前往损伤部位。
Pizza等人的研究[302]发现,被动拉伸可通过改变DNA表达的方式,让身体产生更多的中性粒细胞。
中性粒细胞不仅具有氧化、溶解细胞膜的功能(为了引发再生和修复),也被一些研究发现具有保护肌肉的作用[300,301,302]。
Pizza等人证实:
如果使用一些细胞信号阻断剂抑制了中性粒细胞的产生,则预先进行的被动拉伸,不再对之后的训练产生“肌肉保护作用”。
由此证明了,被动拉伸对肌肉可具有一定保护作用,这必须通过中性粒细胞来实现。
虽然机制不完全明确,但我猜测可能跟中性粒细胞的氧化功能有关。
因为我们已经了解,它通过氧化、溶解肌细胞的行为来促进肌肉再生和修复,同时也造成肌肉抗氧化能力提高:这就是大家感觉到的:首次训练后酸疼的厉害、但之后再去练,就没这么酸疼了。
注意,也有研究表明,运动前做静态拉伸,对肌肉酸痛、压痛和力量损失没有预防作用[292,293]、甚至有相反的作用[286],有时候拉伸造成更多肌肉损伤和延迟酸疼。
总的来说,虽然在练之前一段日子进行被动拉伸,可降低肌肉在训练后的损伤(中性粒细胞),但对正常训练者来说缺乏必要性,因为力量训练已经自带这样的效果了。
相似性三:都具有类似的康复作用
证据表明,力量训练与长期拉伸相比,对于慢性颈部疼 [241、323] 和腰椎间盘摘除预后[243、老年人柔韧性[319]、步行速度[321]、敏捷性[320]等有相同或者类似改善;
在改善慢性颈部疼痛[242]、年轻人踝关节柔韧性[322],方面,力量训练相对于拉伸或单独有氧,有明显优势;
例如Arja等人[241]对101名慢性颈部疼痛患者进行了为期一年的力量训练或者拉伸训练,发现两种治疗方式对患者的疼痛、残疾程度改善程度类似;
Arja等人[243]对126名腰椎间盘手术后病人进行了为期一年的研究,其中65人进行力量 拉伸训练、61人只进行拉伸训练,结果两组的疼痛、肌力等改善情况类似;
Jari[242]等人对59名患有慢性颈部疼痛的女性进行了单独力量训练、或单独拉伸训练、或单独有氧训练。结果发现,随颈部力量的显著增加(第一年44%、第二年27%),力训组女性的颈部疼痛和残疾指数显著下降,但拉伸组、有氧组带来的改善非常轻微。
此外,动物实验[258,259,260,261]也从侧面印证了上述观点。
相似性四:引发类似的神经反应
我们在之前的文章提供了大量证据表明,拉伸降低运动能力、肌肉力量、甚至是增肌程度;不仅如此,速度非常慢的热身活动也不被提倡、被认为以负面效果为主的。
这是因为,拉伸和力训的力训离心阶段(如果时间过长的话),都抑制脊髓和相关的神经反射活动兴奋性[91,297,298,315,316,317,318]。
相似性五:增加肌节数
对拉伸的研究发现,只要强度足够,便能通过刺激细胞外基质(ECW)促进新的肌节生成[299]。
Gomes等人观察到[304],在一段时间的拉伸后,肌生成因子在细胞内表达增加,相关mRNA和多聚核糖体也增加。
有证据表明,类似的机制在力训离心阶段也发生[86,305],新的肌节数的增加有助于增加肌肉的长度[86],这可能解释了为什么力训的离心阶段也导致了显著的柔韧性增长。
认知决定视野
在大家都争论力训后是否需要补充拉伸、把思维方向放在把力训和拉伸进行对立、对比的时候......
其实大多数人都忽略了,他俩本身就很接近,几乎就是一码事。
那些天天捧拉伸的机构、自媒体,并不真的懂得拉伸,也并不真的理解拉伸。
反倒是那些年复一年,日复一日坚持训练的人,对拉伸有更深刻的体会。
柔韧性高总是好事?警惕惯性思维
系列调查研究得出,柔韧性与受伤之间的关系是存在矛盾的[183,184,185,186,187,188,189]、或是模棱两可的[217]。
许多人都认为,肌肉弹性越好,刚度越低,受伤的可能性就越低,但这并不是完整的信息拼图。
从临床医学的角度看,肌肉-肌腱的刚度很重要,因为在既定的关节角,肌肉较为刚性、硬、甚至是紧绷的受试者,他们的肌肉-肌腱组织能吸收更多的能量(冲击)[183]。
研究发现,肌肉和肌腱的刚度、吸收能量的能力,是预防损伤的关键[183,192,193]。
力量训练能等比增加肌肉中的结缔组织数量[214,215,216],能让肌肉在收缩、受冲击时吸收更多能量,利于防止拉伤。
过分拉伸和追求柔韧性,可导致肌肉与肌腱的连接处 “变弱” 。而这个位置,刚好就是发生肌肉拉伤的主要位置[194,195,196]。
这可能也解释了为什么我们之前的文章中发现,力量训练能治疗一些慢性疼痛。
此外,研究发现,那些在各类柔韧性测试中表现出非病理性肌肉紧绷、刚度较高的人,在慢跑时效率更高[190,191],这可能是因为他们的肌肉-肌腱所能储存的能量较多[211,212]。
并且拉伸可能不会改变跑步的经济性(能量使用效率)[213]。
总体来说,拉伸依然是康复和体育运动的一个重要组成部分,但是我们应当意识到:
(1)不同的体育项目对柔韧性的要求,差异非常大,例如跨栏和体操的柔韧性要求就比长跑和力量举要高得多;
(2)运动员和普通人,对柔韧性的要求,差异也非常大。普通人的柔韧性只要能满足日常生活和常见锻炼即可。
拉伸可用作心理安慰剂
智人是主观的生物,只相信自己愿意、喜欢相信的东西、事情。
于是有了安慰剂效应(Placebo Effect)。
该效应出自医学临床经验,原本指的是给予病人无效的治疗或药物,只要病人相信这种药物有效,可能就会发生症状减轻。
安慰剂效应,解释了为什么 “个人亲自实践” 根本就不靠谱。
因为没有对照、没有双盲,没有排除混淆因素,训练者可能会因为 “相信这个方法有效” ,而导致实践结果偏离客观。
如果有人真的相信练后静态拉伸,觉得有用,那么它可能就会有一些用。
当然,每个人都有自己的自由,可以选择信、或者不信什么,当然也包括科学和事实。
全文结束,感谢阅读
更多健身咨询,请关注头条号“力训研究所”
参考文献
头条提示字数过多,参考文献未放完整,还请读者见谅!
1. Etnyre BR Lee EJ. Comments on prorioceptive neuromuscular facilitation stretching techniques. Res Q 1987;58:184-8.
2. Huxley AF Niedergerke R (1954) Structural changes in muscle during contraction. Interference microscopy of living muscle fibres. Nature 173:971–973.
3. Huxley HE Hanson J (1954) Changes in cross-striations of muscle during contraction and stretch and their structural implications. Nature 173:973–976.
4. Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318.
5. Huxley HE (1969) The mechanism of muscular contraction. Science 164:1356–1366.
6. Huxley AF Simmons RM (1971) Proposed mechanism of force generation in striated muscle.
7. Rayment I Holden HM Whittaker M Yohn CB Lorenz M Holmes KC Milligan RA (1993) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261:58–65.
8. Rayment I Rypniewski WR Schmidt-B?se K Smith R Tomchick DR Benning MM Winkelmann DA Wesenberg G Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58.
9. Ford LE Huxley AF Simmons RM (1977) Tension responses to sudden length change in stimulated frog muscle fibers near slack length. J Physiol (London) 269:441–515.
10. J C Haselgrove H E Huxley.X-ray evidence for radial cross-bridge movement and for the sliding filament model in actively contracting skeletal muscle.J Mol Biol. 1973 Jul 15;77(4):549-68.
11. R Dabrowska W Drabikowski.Molecular basis of muscular contraction.Postepy Biochem. 1973;19(3):343-59.
12. Postepy Biochem.The cross-bridge theory. Journal: Physiological 1973;19(3):343-59.
13. Gerald H. Pollack.On the Contractile Mechanism in Cardiac Muscle.Cardiac Electrophysiology Circulation.
14. T R Leonard 1 W Herzog.Regulation of muscle force in the absence of actin-myosin-based cross-bridge interaction. 15: 448-54 Physiol Cell Physiol. 2010 Jul;299(1):C14-20. Epub 2010 Mar 31.
15. Bagni MA Cecchi G Schoenberg M. A model of force production that explains the lag between crossbridge attachment and force after electrical stimulation of striated muscle fibers. Biophys J. 1988 Dec;54(6):1105–1114.
16. Eisenberg E Hill TL. Muscle contraction and free energy transduction in biological systems. Science. 1985 Mar 1;227(4690):999–1006.
17. Eisenberg E Hill TL Chen Y. Cross-bridge model of muscle contraction. Quantitative analysis. Biophys J. 1980 Feb;29(2):195–227.
18. Finer JT Simmons RM Spudich JA. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 1994 Mar 10;368(6467):113–119.
19. Goldman YE Huxley AF. Actin compliance: are you pulling my chain? Biophys J. 1994 Dec;67(6):2131–2133.
20. Mijailovich SM Stamenovi? D Fredberg JJ. Toward a kinetic theory of connective tissue micromechanics. J Appl Physiol (1985) 1993 Feb;74(2):665–681.
21. Thorson J White DC. Distributed representations for actin-myosin interaction in the oscillatory contraction of muscle. Biophys J. 1969 Mar;9(3):360–390.
22. Wakabayashi K Sugimoto Y Tanaka H Ueno Y Takezawa Y Amemiya Y. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys J. 1994 Dec;67(6):2422–2435.
23. R D Bremel A Weber.Cooperation within actin filament in vertebrate skeletal muscle.Nat New Biol. 1972 Jul 26;238(82):97-101.
24. D A Smith.The theory of sliding filament models for muscle contraction. III. Dynamics of the five-state model.J Theor Biol. 1990 Oct 21;146(4):433-66.
25. B Brenner M Schoenberg J M Chalovich L E Greene E Eisenberg.Evidence for cross-bridge attachment in relaxed muscle at low ionic strength.Proc Natl Acad Sci U S A. 1982 Dec;79(23):7288-91.
26. A M Gordon 1 E B Ridgway L D Yates T Allen.Muscle cross-bridge attachment: effects on calcium binding and calcium activation.Adv Exp Med Biol. 1988;226:89-99.
27. Ricarda Haeger Felipe de Souza Leite Dilson E Rassier.Sarcomere length non-uniformities dictate force production along the descending limb of the force-length relation.Proc Biol Sci. 2020 Oct 28;287(1937):20202133.
28. Dilson E Rassier.Sarcomere mechanics in striated muscles: from molecules to sarcomeres to cells.Am J Physiol Cell Physiol. 2017 Aug 1;313(2):C134-C145.Epub 2017 May 24.
29. Kiisa Nishikawa 1 Samrat Dutta 2 Michael DuVall 2 3 Brent Nelson 4 Matthew J Gage 5 Jenna A Monroy 6.Calcium-dependent titin-thin filament interactions in muscle: observations and theory.J Muscle Res Cell Motil. 2020 Mar;41(1):125-139.Epub 2019 Jul 9.
30. B Brenner E Eisenberg.The mechanism of muscle contraction. Biochemical mechanical and structural approaches to elucidate cross-bridge action in muscle.Basic Res Cardiol. 1987;82 Suppl 2:3-16.
31. R W Bohannon.Effect of repeated eight-minute muscle loading on the angle of straight-leg raising.Phys Ther. 1984 Apr;64(4):491-7.
32. M Wiktorsson-M?ller B Oberg J Ekstrand J Gillquist.Effects of warming up massage and stretching on range of motion and muscle strength in the lower extremity.Am J Sports Med. Jul-Aug 1983;11(4):249-52
33. B Anderson 1 E R Burke.Scientific medical and practical aspects of stretching.Clin Sports Med. 1991 Jan;10(1):63-86.
34. Jerome V. Ciullo,Bertram Zarins,Biomechanics of the Musculotendinous Unit: Relation to Athletic Performance and Injury.April 1983Clinics in Sports Medicine 2(1):71-86.
35. GARRETT,E William.Muscle strain injuries: clinical and basic aspects.Med Sci Sports Exerc. 1990 Aug;22(4):436-43.
36. Dyhre-Poulsen P McHugh M Kjaer M. Mechanical and physiological responses to stretching with and without preisometric contraction in human skeletal muscle. Arch Phys Med Rehabil 1996; 77:373-8.
37. J P Halbertsma 1 L N Goeken.Stretching exercises: effect on passive extensibility and stiffness in short hamstrings of healthy subjects.Arch Phys Med Rehabil. 1994 Sep;75(9):976-81.
38. S P Magnusson 1 E B Simonsen P Aagaard U Moritz M Kjaer.Contraction specific changes in passive torque in human skeletal muscle.Acta Physiol Scand. 1995 Dec;155(4):377-86.
39. ARMSTRONG R.B. 1984. Mechanisms of exerciseinduced delayed onset muscular soreness. Med Sci Sports Exer 16 529-538.
40. EBBELING C.B. & CLARKSON P.M. 1989. Exerciseinduced muscle damage and adaptation. Sports Med 7 207-234.
41. FRIDEN J. & LIEBER R.L. 1992. Structural and mechanical basis of exercise-induced muscle injury.Med Sci Sports Exer 24 521-530.
42. JONES D.A. NEWHAM D.J. & CLARKSON P.M. 1987.Skeletal muscle stiffness and pain following eccentric exercise of the elbow flexors. Pain 30 233-242.
43. STAUBER W.T. CLARKSON P.M. FRITZ V.K. &EVANS W. J. 1990. Extracellular matrix disruption and pain after eccentric muscle action. 3 Appl STRICKLER T. MALONE T. & GARRETT W.E. 1990.PhysioE 69 868-874.
44. HOWELL J.N. CHLEBOUN G. & CONATSER . 1993.Muscle stiffness strength loss swelling and soreness following exercise-induced injury in humans. 3 Physiol (Lond) 464 183-196.
45. BOBBERT M.F. HOLLANDER A.P. & HUIJING P.A.1986. Factors in delayed onset muscular sorenessof man. Med Sci Sports Exer 18 75-81.
46. WORRELL T.W. PERRIN D.H. GANSNEDER B.M. &GIECK J.H. 1991. Comparison of isokinetic strength and flexibility measures between hamstring injured and noninjured athletes. 3 Orthop Sports Phys Ther13 118-125.
47. JONHAGEN S. NEMETH G. & ERIKSSON E. 1994.Hamstring injuries in sprinters. The role of concentric and eccentric hamstring muscle strength
and flexibility. Am 3 Sports Med 22 262-266.
48. Soltow Q. A. Betters J. L. Sellman J. E. Lira V. A. Long J. H. & Criswell D. S. (2006). Ibuprofen inhibits skeletal muscle hypertrophy in rats. Medicine and Science in Sports and Exercise 38(5) 840.
49. Novak M. L. Billich W. Smith S. M. Sukhija K. B. McLoughlin T. J. Hornberger T. A. & Koh T. J. (2009). COX-2 inhibitor reduces skeletal muscle hypertrophy in mice. American Journal of Physiology-Regulatory Integrative and Comparative Physiology 296(4) R1132-R1139.
50. Trappe T. A. White F. Lambert C. P. Cesar D. Hellerstein M. & Evans W. J. (2002). Effect of ibuprofen and acetaminophen on postexercise muscle protein synthesis. American Journal of Physiology-Endocrinology and Metabolism 282(3) E551-E556.
51. Davies NM 1998. Clinical pharmacokinetics of ibuprofen. The first 30 years. Clin. Pharmacokinet. 34: 101-154.
52. Evan AM Nation RL Sansom LN Bochner F Somogyi AA. 1991. Effect of racemic ibuprofen dose on the magnitude and duration of platelet cyclo-oxygenase inhibition: relationship between inhibition of thromboxane production and the plasma unbound concentration of S( )-ibuprofen. Br. J. Clin. Pharmacol. 31: 131-138.
53. JR Krentz The effects of ibuprofen on muscle hypertrophy strength and soreness during resistance training. Applied Physiology Nutrition and Metabolism 2008 Vol. 33 No. 3 : pp. 470-475.
54. Maganaris C. N. & Paul J. P. (1999). In vivo human tendonmechanical properties. Journal of Physiology 521 307–313.
55. Kubo K. Kawakami Y. & Fukunaga T.(1999). The influence of elastic properties of tendon structures on jump performance in humans. Journal of Applied Physiology 87 2090–2096.
56. Kubo K. Kawakami Y. & Fukunaga T.Influence of static stretching on viscoelastic properties of human.tendon structures in vivo. Journal of Applied Physiology 90.
57. Kubo K. Kawakami Y. & Fukunaga T.Influences of repetitive muscle contractions with different modes on the elasticity of tendon structures in vivo. Journal of Applied Physiology 91 277–282.
58. Narici M. V. Hopeller H. Kayser B.. (1996). Human quadriceps cross-sectional area torque and neural activation during 6 months strength training. Acta Physiologica Scandinavica 157 175–186.
59. Effects of isometric training on the elasticity of human tendon structures in vivo. Journal of Applied Physiology 91 26–32.
60. Guyton A. Textbook of Medical Physiology. Philadelphia PA: WB Saunders 1986. pp. 366–368.
61. McGinley C Shafat A and Donnelly AE. Does antioxidant vitamin supplementation protect against muscle damage? Sports Med 39: 1011–1032 2009.
62. Proske U and Morgan DL. Muscle damage from eccentric exercise: Mechanism mechanical signs adaptation and clinical applications. J Physiol 537: 333–345 2001.
63. Clarkson PM and Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil 81: 52–69 2002.
64. Howell JN Chleboun G and Conatser R. Muscle stiffness strength loss swelling and soreness following exercise-induced injury in humans. J Physiol (Lond) 464: 183–196 1993.
65. Ebbeling CB and Clarkson PM. Exercise-induced muscle damage and adaptation. Sports Med 7: 207–234 1989.
66. Kuipers H. Exercise-induced muscle damage. Int J Sports Med 15:132–135 1994.
67. Vierck J O’Reilly B Hossner K Antonio J Byrne K Bucci L and Dodson M. Satellite cell regulation following myotrauma caused by resistance exercise. Cell Biol Int 24: 263–272 2000.
68. Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res 24: 2857–2872 2010.
69. McGinley C Shafat A and Donnelly AE. Does antioxidant vitamin supplementation protect against muscle damage? Sports Med 39: 1011–1032 2009.
70. Tidball JG. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 288: 345–353 2005.
71. Uchiyama S Tsukamoto H Yoshimura S and Tamaki T.Relationship between oxidative stress in muscle tissue and weight-lifting-induced muscle damage. Pflugers Arch 452:109–116 2006.
72. Takarada Y Nakamura Y Aruga S Onda T Miyazaki S and Ishii N. Rapid increase in plasma growth hormone after lowintensity resistance exercise with vascular occlusion. J Appl Physiol 88: 61–65 2000.
73. S P Magnusson 1 E B Simonsen P Aagaard H S rensen M Kjaer.A mechanism for altered flexibility in human skeletal muscle.J Physiol. 1996 Nov 15;497 ( Pt 1)(Pt 1):291-8.
74. Timmins RG Shield AJ Williams MD Lorenzen C.Biceps femoris long head architecture:a reliability and retrospective injury study.Med Sci Sport Exerc.2015;47(5)
75. Ben M Harvey LA (2010) Regular stretch does not increase muscle extensibility: a randomized controlled trial. Scand J Med Sci Sports 20:136–144
76. Bjorklund M Hamberg J Crenshaw AG (2001) Sensory adaptation after a 2-week stretching regimen of the rectus femoris muscle.Arch Phys Med Rehabil 82:1245–1250.
77. Folpp H Deall S Harvey LA Gwinn T (2006) Can apparent increases in muscle extensibility with regular stretch be explained by changes in tolerance to stretch? Aust J Physiother 52:45–50.
78. Ylinen J Kankainen T Kautiainen H Rezasoltani A Kuukkanen T Hakkinen A (2009) Effect of stretching on hamstring muscle compliance.J Rehabil Med 41:80–84.
79. Chan SP Hong Y Robinson PD (2001) Flexibility and passive resistance of the hamstrings of young adults using two different static stretching protocols. Scand J Med Sci Sports 11:81–86.
80. Covert CA Alexander MP Petronis JJ Davis DS (2010) Comparison of ballistic and static stretching on hamstring muscle length using an equal stretching dose. J Strength Cond Res 24:3008–3014
81. Depino GM Webright WG and Arnold BL. Duration of maintained hamstring flexibility after cessation of an acute static stretching protocol. J Athletic Train 35: 56–59 2000.
82. Goldspin G Tabary C Tabary JC Tardieu C Tardieu G (1974) Effect of denervation on adaptation of sarcomere number and muscle extensibility to functional length of muscle. J Physiol 236:733–742
83. Marques AP Vasconcelos AA Cabral CM Sacco IC (2009) Effect of frequency of static stretching on flexibility hamstring tightness and electromyographic activity. Braz J Med Biol Res 42:949–953
84. Reid DA McNair PJ (2004) Passive force angle and stiffness changes after stretching of hamstring muscles. Med Sci Sports Exerc 36:1944–1948
85. Santonja Medina FM Sainz De Baranda Andujar P Rodriguez Garcia PL Lopez Minarro PA Canteras Jordana M (2007) Effects of frequency of static stretching on straight-leg raise in elementary school children. J Sports Med Phys Fitness 47:304–308
86. Weppler CH Magnusson SP (2010) Increasing muscle extensibility: a matter of increasing length or modifying sensation? Phys Ther 90:438–449
87. Keitaro Kubo Effects of static stretching on mechanical properties and collagen fiber orientation of the Achilles tendon in vivo.Clinical Biomechanics 60(2018)115-120.
88. SAM K. MORTON JAMES R. WHITEHEAD RONALD H. BRINKERT AND DENNIS J. CAINE.RESISTANCE TRAINING VS. STATIC STRETCHING:EFFECTS ON FLEXIBILITY AND STRENGTH.Department of Physical Education Exercise Science and Wellness (PXW) University of North Dakota Grand Forks North Dakota
89. Simao R Lemos A Salles B Leite T Oliveira E′ Rhea M and Reis VM. The influence of strength flexibility and simultaneous training on flexibility and strength gains. J Strength Cond Res 25(5): 1333–1338 2011
90. Hutton RS. Neuromuscular basis of stretching exercise. In: Komi PV. Strength and Power in Sports. Oxford: Blackwell Scientific Publications 1993:29-38.
91. Moore MA Hutton RS. Electromyographic investigation of muscle stretching techniques. Med Sci Sports Exerc 1980; 12:322-9.
92. WORRELL T.W. PERRIN D.H. GANSNEDER B.M. & GIECK J.H. 1991. Comparison of isokinetic strength and flexibility measures between hamstring injured and noninjured athletes. 3 Orthop Sports Phys Ther 13 118-125.
93. JONHAGEN S. NEMETH G. & ERIKSSON E. 1994.Hamstring injuries in sprinters. The role of concentric and eccentric hamstring muscle strength and flexibility. Am 3 Sports Med 22 262-266.
94. Fletcher IM. The effect of different dynamic stretch velocities on jump performance. Eur J Appl Physiol. 2010;109:491–8.
95. Wiemann K Hahn K. Influences of strength stretching acid circulatory exercises on flexibility parameters of the human hamstrings. Int J Sports Med. 1997;18:340–6.
96. No′ brega AC Paula KC and Carvalho AC. Interaction between resistance training and flexibility training in healthy young adults. J Strength Cond Res 19: 842–846 2005.
97. Ekstrand J. Gillquist J. and Liljedahl S.O. 1983. Prevention of soccer injuries.Supervision by doctor and physiotherapist. Am. J. Sports Med. 11: 116–120.
98. Hadala M. and Barrios C. 2009. Different strategies for sports injury prevention in an America’s Cup yachting crew. Med. Sci. Sports Exerc. 41: 1587–1596.
99. Anderson B Burke ER. Scientific medical and practical aspects of stretching. Clin Sports Med 1991 : 10: 63 - 86
100. Corbin CB Noble L Flexibility a major component of physical fitness. J Phys Ed Rec 1980: 6: 23-60
101. Marino M. Current concepts on rehabilitation in sports medicine: research and clinical interrelationship. In: Nicholas JA. Hershman EB (eds). The Lower Extremity and Spine in Sports Medicine. St Louis: Mosby. 1986: 164
102. S. P. Magnusson I Aagard E. Simonsen E Bojsen-Meller A Biomechanical Evaluation of Cyclic and Static Stretch in Human Skeletal Muscle Int. J. Sports Med.. Vol. 19 pp. 310-316 1998.
103. AR Barbosa,JM Santarém,WJ Filho,MDFN Marucci.Effects of Resistance Training on the Sit-and-Reach Test in Elderly Women.February 2002The Journal of Strength and Conditioning Research 16.
104. Ioannis G Fatouros 1 Antonios Kambas Ioannis Katrabasas Diamanda Leontsini Athanasios Chatzinikolaou Athanasios Z Jamurtas Ioannis Douroudos Nikolaos Aggelousis Kiriakos Taxildaris.Resistance training and detraining effects on flexibility performance in the elderly are intensity-dependent.J Strength Cond Res. 2006 Aug;20(3):634-42.
105. Walace David Monteiro 1 Roberto Simo Marco Doederlein Polito Cleves Araújo Santana Rogério Batista Chaves Ewerton Bezerra Steven J Fleck.Influence of strength training on adult women's flexibility.J Strength Cond Res. 2008 May;22(3):672-7.
106. Santos E Rhea MR Sim?o R Dias I Freitas de Salles B Novaes J Leite T Blair JC and Bunker DJ. Influence of moderately intense strength training on flexibility in sedentary young women. J Strength Cond Res 24(11): 3144-3149 2010
107. WILMORE J.H. R.B. PARR R.N. GIRANDOLA P. WARD P.A. VODAK T.J. BARSTOW T.V. PIPES G.T. ROMERO AND P. LESLIE.Physiological alterations consequent to circuit weight training.Med. Sci. Sports Exerc. 10:79–84. 1978.
108. brega AC Paula KC and Carvalho AC. Interaction between resistance training and flexibility training in healthy young adults. J Strength Cond Res 19: 842–846 2005.
109. N McCartney,Acute responses to resistance training and safety.Med Sci Sports Exerc. 1999 Jan;31(1):31-7.
110. Sima R Lemos A Salles B Leite T Oliveira E′ Rhea M and Reis VM. The influence of strength flexibility and simultaneous training on flexibility and strength gains. J Strength Cond Res 25(5): 1333–1338 2011
111. IG Fatouros 1 K Taxildaris S P Tokmakidis V Kalapotharakos N Aggelousis S Athanasopoulos I Zeeris I Katrabasas.The effects of strength training cardiovascular training and their combination on flexibility of inactive older adults.Int J Sports Med. 2002 Feb;23(2):112-9.
112. TRASH K. AND B. KELLY. Flexibility and strength training. J.Appl. Sport Sci. Res. 4:74–75. 1987.
113. Fatouros IG Kambas A Katrabasas I Nikolaidis K Chatzinikolaou A Leontsini D and Taxildaris K. Strength training and detraining effects on muscular strength anaerobic power and mobility of inactive older men are intensity dependent. Br J Sports Med 39: 776–780 2005.
114.Santos E Rhea MR Sim?o R Dias I Freitas de Salles B Novaes J Leite T Blair JC and Bunker DJ. Influence of moderately intense strength training on flexibility in sedentary young women. J Strength Cond Res 24(11): 3144-3149 2010
115. Girouard CK and Hurley BF. Does strength training inhibits gains in range of motion from flexibility training in older adults? Med Sci Sports Exerc 27: 1444–1449 1995.
116.No′ brega ACL Paula KC and Carvalho ACG. Interaction between resistance training and flexibility training in healthy young adults.J Strength Cond Res 19: 842–846 2005.
117.Simao R Lemos A Salles B Leite T Oliveira E′ Rhea M and Reis VM. The influence of strength flexibility and simultaneous training on flexibility and strength gains. J Strength Cond Res 25(5): 1333–1338 2011
118.No′ brega AC Paula KC and Carvalho AC. Interaction between resistance training and flexibility training in healthy young adults. J Strength Cond Res 19: 842–846 2005.
119. Kokkinidis ETsamourtas ABuckenmeyer P et al.The effect of static stretching and cryotherapy on the recovery of delayed muscle soreness.Exercise & Society Journal of Sport Science (1998) (19) 45-53
120. Nikos C. Apostolopoulos.The Effect of Different Passive Static Stretching Intensities on Perceived Muscle Soreness and Muscle Function Recovery Following Unaccustomed Eccentric Exercise: A Randomised Controlled Trial.Stretch Intensity and the Inflammatory Response: A Paradigm Shift pp 159-181.
121. Disaphon Boobphachart Nuttaset Manimmanakorn Apiwan Manimmanakorn Worrawut Thuwakum Michael J Hamlin.Effects of elastic taping non-elastic taping and static stretching on recovery after intensive eccentric exercise.Res Sports Med. Apr-Jun 2017;25(2):181-190.
122. Nikos C Apostolopoulos Ian M Lahart Michael J Plyley Jack Taunton Alan M Nevill Yiannis Koutedakis Matthew Wyon George S Metsios.The effects of different passive static stretching intensities on recovery from unaccustomed eccentric exercise - a randomized controlled trial.
123. Dissaphon Boobpachat Nuttaset Manimmanakorn,Apiwan Manimmanakorn,Worrawut Thuwakum.Effects of elastic taping versus static stretching on delayed onset muscle soreness.Queen town research week New zealandAt: Queen townOrdinal: Poster presentationAffiliation.August 2015.
124. Luttrell M.J. and Halliwill J.R. 2015. Recovery from exercise: vulnerable state window of opportunity or crystal ball?. Frontiers in physiology 6 p.204.
125. Samson M. Button D.C. Chaouachi A. and Behm D.G. 2012. Effects of dynamic and static stretching within general and activity specific warm-up protocols. Journal of sports science & medicine 11(2) p.279
126. Young W. and Elliott S. 2001. Acute effects of static stretching proprioceptive neuromuscular facilitation stretching and maximum voluntary contractions on explosive force production and jumping performance. Res. Q. Exerc. Sport 72(3): 273–279.
127. SV Karande,YW Cheung,CF Dichl,MJ Levinson.Stretching Performance.
128. Chaouachi A. Castagna C. Chtara M. Brughelli M. Turki O. Galy O. et al.2010. Effect of warm-ups involving static or dynamic stretching on agility sprinting and jumping performance in trained individuals. J. Strength.Cond. Res. 24: 2001–2011.
129. Paradisis G.P. Pappas P.T. Theodorou A.S. Zacharogiannis E.G. Skordilis E.K. and Smirniotou A.S. 2014. Effects of static and dynamic stretching on sprint and jump performance in boys and girls. J. Strength Cond. Res. 28: 154–160.
130. Power K. Behm D. Cahill F. Carroll M. and Young W. 2004. An acute bout of static stretching: effects on force and jumping performance. Med. Sci. Sports Exerc. 36: 1389–1396.
131. Young W.B. and Behm D.G. 2003. Effects of running static stretching and practice jumps on explosive force production and jumping performance. J.Sports Med. Phys. Fit. 43: 21–27.
132. Dent J O’Brien J Bushman T Abel K and Janot J. Acute and prolonged effects of static stretching and dynamic warm-up on muscular power and strength. Med Sci Sports Exer 41: S64 2009.
133. Power K Behm D Cahill F Carroll M Young W. An acute bout of static stretching: effects on force and jumping performance.Med Sci Sport Exerc. 2004;36:1389–96.
134. Opplert J Genty J-B Babault N. Do stretch durations affect muscle mechanical and neurophysiological properties? Int J Sports Med. 2016;37:673–9.
135. Avela J Kyro H. Altered reflex sensitivity after repeated and prolonged passive muscle stretching. J Appl Physiol. 1999;86:1283–91
136. Babault N Kouassi BYL Desbrosses K. Acute effects of 15 min static or contract-relax stretching modalities on plantar flexors neuromuscular properties. J Sci Med Sport Sports Med Aust.2010;13:247–52.
137. Johansson PH Lindstrom L Sundelin G and Lindstrom B. The effects of preexercise stretching on muscular soreness tenderness and force loss following heavy eccentric exercise. Scand J Med Sci Sports 9: 219–225 1999.
138. Cramer JT Beck TW Housh TJ Massey LL Marek SM Danglemeier S et al. Acute effects of static stretching on characteristics of the isokinetic angle—torque relationship surface electromyography and mechanomyography. J Sports Sci. 2007;25:687–98
139. Fowles JR Sale DG Mac Dougall JD. Reduced strength after passive stretch of the human plantarflexors. J Appl Physiol.2000;89:1179–88.
140. Herda TJ Herda ND Costa PB Walter-Herda AA Valdez AM Cramer JT. The effects of dynamic stretching on the passive properties of the muscle–tendon unit. J Sports Sci.2012;31:479–87.
141. Kay AD Blazevich AJ. Isometric contractions reduce plantar flexor moment Achilles tendon stiffness and neuromuscular activity but remove the subsequent effects of stretch. J Appl Physiol. 2009;107:1181–9.
142. Kay AD Blazevich AJ. Moderate-duration static stretch reduces active and passive plantar flexor moment but not Achilles tendon stiffness or active muscle length. J Appl Physiol.2009;106:1249–56.
143. Weir DE Tingley J Elder GCB. Acute passive stretching alters the mechanical properties of human plantar flexors and the optimal angle for maximal voluntary contraction. Eur J Appl Physiol. 2005;93:614–23.
144. Winchester JB Nelson AG Kokkonen J. A single 30-s stretch is sufficient to inhibit maximal voluntary strength. Res Q Exerc Sport. 2009;80:257–61.
145. Behm DG Bambury A Cahill F Power K. Effect of acute static stretching on force balance reaction time and movement time.Med Sci Sport Exerc. 2004;36:1397–402.
146. Cornwell A Nelson AG Sidaway B. Acute effects of stretching on the neuromechanical properties of the triceps surae muscle complex. Eur J Appl Physiol. 2002;86:428–34.
147. Knudson D Noffal G. Time course of stretch-induced isometric strength deficits. Eur J Appl Physiol. 2005;94:348–51.
148. Kokkonen J Nelson AG Cornwell A. Acute muscle stretching inhibits maximal strength performance. Res Q Exerc Sport.1998;69:411–5.
149. Maisetti O Sastre J Lecompte J Portero P. Differential effects of an acute bout of passive stretching on maximal voluntary torque and the rate of torque development of the calf muscletendon unit. Isokinet Exerc Sci. 2007;15:11–7.
150. McHugh MP Nesse M. Effect of stretching on strength loss and pain after eccentric exercise. Med Sci Sport Exerc. 2008;40:566–73.
151. Ogura Y Miyahara Y Naito H Katamoto S Aoki J. Duration of static stretching influences muscle force production in hamstring muscles. J Strength Cond Res. 2007;21:788–92.
152. Viale F Nana-Ibrahim S Martin RJF. Effect of active recovery on acute strength deficits induced by passive stretching. J Strength Cond Res. 2007;21:1233–7.
153. Young W Elias G Power J. Effects of static stretching volume and intensity on plantar flexor explosive force production and range of motion. J Sports Med Phys Fitness. 2006;46:403–11.
154. Wallmann HW Christensen SD Perry C Hoover DL. The acute effects of various types of stretching static dynamic ballistic and no stretch of the iliopsoas on 40-yard sprint times in recreational runners. Int J Sports Phys Ther. 2012;7:540–7.
155. Bacurau RFP Monteiro GA Ugrinowitsch C Tricoli V Cabral LF Aoki MS. Acute effect of a ballistic and a static stretching exercise bout on flexibility and maximal strength. J Strength Cond Res. 2009;23:304–8.
156. Herda TJ Herda ND Costa PB Walter-Herda AA Valdez AM Cramer JT. The effects of dynamic stretching on the passive properties of the muscle–tendon unit. J Sports Sci.2012;31:479–87.
157. Samukawa M Hattori M Sugama N Takeda N. The effects of dynamic stretching on plantar flexor muscle–tendon tissue properties. Man Ther. 2011;16:618–22.
158. Paradisis GP Theodorou ASA Pappas PT Zacharogiannis EG Skordilis EK Smirniotou AS. Effects of static and dynamic stretching on sprint and jump performance in boys and girls. J Strength Cond Res. 2014;28:154–60.
159. Curry BS Chengkalath D Crouch GJ Romance M Manns PJ. Acute effects of dynamic stretching static stretching and light aerobic activity on muscular performance in women. J Strength Cond Res. 2009;23:1811–9.
160. Nelson A Kokkonen J. Acute ballistic muscle stretching inhibits maximal strength performance. Res Q Exerc Sport.2001;72:415–9.
161. Fletcher IM. The effect of different dynamic stretch velocities on jump performance. Eur J Appl Physiol. 2010;109:491–8.
162. Fletcher IM Jones B. The effect of different warm-up stretch protocols on 20 meter sprint performance in trained rugby union players. J Strength Cond Res. 2004;18:885–8.
163. Leone DCPG Pezarat P Valamatos MJ Fernandes O Freitas S Moraes AC. Upper body force production after a low-volume static and dynamic stretching. Eur J Sport Sci. 2014;14:69–75.
164. Carvalho FLP Carvalho MCGA Sima?o R Gomes TM Costa PB Neto LB et al. Acute effects of a warm-up including active passive and dynamic stretching on vertical jump performance.J Strength Cond Res. 2012;26:2447–52.
165. Sa′ MA Neto GR Costa PB Gomes TM Bentes CM Brown AF et al. Acute effects of different stretching techniques on the number of repetitions in a single lower body resistance training session. J Hum Kinet. 2015;45:177–85.
166. Unick J Kieffer HS Cheesman W Feeney A. The acute effects of static and ballistic stretching on vertical jump performance in trained women. J Strength Cond Res. 2005;19:206–12.
167. Herda TJ Cramer JTJ Ryan EED McHugh MP Stout JJR. Acute effects of static versus dynamic stretching on isometric peak torque electromyography and mechanomyography of the biceps femoris muscle. J Strength Cond Res. 2008;22:809–17.
168. Bradley PS Olsen PD Portas MD. The effect of static ballistic and proprioceptive neuromuscular facilitation stretching on vertical jump performance. J Strength Cond Res. 2007;21:223–6.
169. Vetter RE. Effects of six warm-up protocols on sprint and jump performance. J Strength Cond Res. 2007;21:819–23.
170. Beedle B Rytter SJ Healy RC Ward TR. Pretesting static and dynamic stretching does not affect maximal strength. J Strength Cond Res. 2008;22:1838–43.
171. Tarik Ozmen Gokce Yagmur Gunes Hanife Dogan Ilyas Ucar Mark Willems.The effect of kinesio taping versus stretching techniques on muscle soreness and flexibility during recovery from nordic hamstring exercise.J Bodyw Mov Ther. 2017 Jan;21(1):41-47.
172. DeVries HA. Prevention of muscular distress after exercise. Res Q 1961;32:177-85.
173. Esposito F Ce R Rampichini S and Veicsteinas A. Acute passive stretching in a previously fatigued muscle: Electrical and mechanical response during tetanic stimulation. J Sports Sci 27: 1347–1357 2009.
174. Montgomery P.G. Pyne D.B. Hopkins W.G. Dorman J.C. Cook K. and Minahan C.L. 2008. The effect of recovery strategies on physical performance and cumulative fatigue in competitive basketball. Journal of sports sciences 26(11) pp.1135-1145.
175. Haddad M. Dridi A. Chtara M. Chaouachi A. Wong D.P. Behm D. and Chamari K. 2014. Static stretching can impair explosive performance for at least 24 hours. The Journal of Strength & Conditioning Research 28(1) pp.140-146.
176. Heisey C.F. and Kingsley J.D. 2016. Effects of static stretching on squat performance in Division I female athletes. International journal of exercise science 9(3) p.359.
177. Donti O. Tsolakis C. and Bogdanis G.C. 2014. Effects of baseline levels of flexibility and vertical jump ability on performance following different volumes of static stretching and potentiating exercises in elite gymnasts. Journal of sports science & medicine 13(1) p.105.
178. Ben M. and Harvey L.A. 2010. Regular stretch does not increase muscle extensibility: a randomized controlled trial. Scandinavian journal of medicine & science in sports 20(1) pp.136-144.
179. Law R.Y. Harvey L.A. Nicholas M.K. Tonkin L. De Sousa M. and Finniss D.G. 2009. Stretch exercises increase tolerance to stretch in patients with chronic musculoskeletal pain: a randomized controlled trial. Physical Therapy 89(10) pp.1016-1026.
180. Kenney L. Wilmore J. and Costill D. (2015). Physiology of Sport and Exercise. 6th ed. Champaign IL: Human Kinetics pp.58-59 136 197 226.
181. Rosenbaum D. and Hennig E.M. 1995. The influence of stretching and warm‐up exercises on Achilles tendon reflex activity. Journal of sports sciences 13(6) pp.481-490.
182. Fowles J.R. Sale D.G. and MacDougall J.D. 2000. Reduced strength after passive stretch of the human plantarflexors. Journal of applied physiology 89(3) pp.1179-1188.
183. Garrett WE. Muscle strain injuries: clinical and basic aspects.Med Sci Sports Exerc 1990: 22: 436-43.
184. Ekstrand J Gillquist J Liljedahl SO. Prevention of soccer injuries. Supervision by doctor and physiotherapist. Am J Sports Med 1983: 11: 116-20.
185. Ekstrand J Gillquist J. The avoidability of soccer injuries.Int J Sports Med 1983: 4: 124-8.
186. Jonhagen S Nemeth G Eriksson E. Hamstring injuries in sprinters. The role of concentric and eccentric hamstring muscle strength and flexibility. Am J Sports Med 1994: 22:262-6.
187. Lysens RJ Ostyn MS Vanden Auweele Y Lefevre J Vuylsteke M Renson L. The accident-prone and overuse-prone profiles of the young athlete. Am J Sports Med 1989: 17:612-9.
188. Jones BH Cowan DN Tomlinson JP Robinson JR PollyDW Frykman PN. Epidemiology of injuries associated with physical training among young men in the army. Med
Sci Sports Exerc 1993: 25: 197-203.
189. Ekstrand J Gillquist J. The frequency of muscle tightness and injuries in soccer players. Am J Sports Med 1982: 10: 75-8
190. Gleim GW Stachenfeld NS Nicholas JA. The influence of flexibility on the economy of walking and jogging. J Orthop Res 1990: 8: 814-23.
191. Craib MW Mitchell VA Fields KB Cooper TR Hopewell R Morgan DW. The association between flexibility and running economy in sub-elite male distance runners. Med Sci Sports Exerc 1996: 28: 73743.
192. Taylor DC Dalton JD Jr. Seaber AV Garrett WEJ. Viscoelastic properties of muscle-tendon units. The biomechanical effects of stretching. Am J Sports Med 1990: 18: 300-9.
193. Garrett WE Jr. Califf JC Bassett FH. Histochemical correlates of hamstring injuries. Am J Sports Med 1984: 12:98-103.
194. Garrett WE Jr. Safran MR Seaber AV Glisson RR RibbeckBM. Biomechanical comparison of stimulated and nonstimulated skeletal muscle pulled to failure. Am J Sports Med 1987: 15: 448-54.
195. Noonan TJ Best TM Garrett WEJ. Identification of a threshold for skeletal muscle injury. Am J Sports Med 1994: 22: 257-61.
196. Taylor DC Dalton JD Jr. Seaber AV Garrett WEJ. Experimental muscle strain injury. Early functional and structural deficits and the increased risk for reinjury. Am J Sports Med 1993: 21: 190-4.
197. Leighton JR. A study of the effect of progressive weight training on flexibility. J Assoc Phys Ment Rehabil 18: 101–104 1964.
198. Raab DM Agre JC McAdam M and Smith EL. Light resistance and stretching exercise in elderly women: Effect upon flexibility. Arch Phys Med Rehabil 69: 268–272 1988.
199. Swank AM Funk DC Durham MP and Roberts S. Adding weights to stretching exercise increases passive range of motion for healthy elderly. J Strength Cond Res 17: 374–378 2003.
200. Faigenbaum A Zaichowski L Westcott W Micheli L and Fehlandt A.The effects of a twice per week strength training program on children. Pediat Exerc Sci 5: 339–346 1993.
201. Sheard PW and Paine TJ. Optimal contraction Intensity during proprioceptive neuromuscular facilitation for maximal increase of range of motion. J Strength Cond Res 24: 416–421 2010.
202. Enoka R. Neuromechanical basis of Itinesiology. Champaign. Ill.:Human I<inetics 1994: 275- 7
203. Harvey LA Byak AJ Ostrovskaya M Glinsky J Katte L Herbert RD. Randomised trial of the effects of four weeks of daily stretch on extensibility of hamstring muscles in people with spinal cord injuries. Aust J Physiother. 2003;49(3):176-181.
204. Weppler CH Magnusson SP. Increasing muscle extensibility: a matter of increasing length or modifying sensation? Phys Ther. 2010;90(3):438-449.
205. Roberto Moriggi Junior [1] ; Ricardo Berton [2] ; Thiago Mattos Frota de Souza [1] ; Mara Patrícia Traina Chacon-Mikahil [1] ; Cláudia Regina Cavaglieri [1].Effect of the flexibility training performed immediately before resistance training on muscle hypertrophy maximum strength and flexibility.2017 Apr;117(4):767-774.
206. Costa PB Ryan ED Herda TJ et al. Acute effects of static stretching on peak torque and the hamstrings-to-quadriceps conventional and functional ratios. Scand J Med Sci Sports 23: 38–45 2013.
207. Papadopoulos G Siatras T Kellis S. The effect of static and dynamic stretching exercises on the maximal isokinetic strength of the knee extensors and flexors. Isokinet Exerc Sci 13: 285–291 2005.
208. Sekir U Arabaci R Akova B Kadagan SM. Acute effects of static and dynamic stretching on leg flexor and extensor isokinetic strength in elite women athletes. Scand J Med Sci Sport 20: 268–281 2010.
209. Winchester JB Nelson AG Kokkonen J. A single 30-s stretch is sufficient to inhibit maximal voluntary strength. Res Q Exerc Sport 80: 257–261 2009.
210. Nicholas JA. Injuries to knee ligaments. Relationship to looseness and tightness in football players. JAMA 1970: 212: 22369.