python机器人学习模型(著名的零基础机器学习课程fast.ai)
python机器人学习模型(著名的零基础机器学习课程fast.ai)当我们开发第二门课《面向程序员的前沿深度学习》的时候,原来选的TensorFlow和Keras框架开始让我们处处碰壁。且听创始人Jeremy Howard详解缘由,也相当于分析了初学者该选择什么样的框架。量子位节选编译如下:刚刚,他们宣布了一件事。下一个fast.ai的课程,将完全基于一个使用PyTorch开发的框架,抛弃原来的TensorFlow和Keras框架。这是为什么?△ Jeremy Howard
李林 问耕 编译整理
量子位 出品 | 公众号 QbitAI
你知道fast.ai么?
他们以提供零基础的深度学习课程而闻名,宣称:只要你有高中数学基础、一年的编程经验,就能通过七周的学习,具备一流的深度学习实践能力。
刚刚,他们宣布了一件事。
下一个fast.ai的课程,将完全基于一个使用PyTorch开发的框架,抛弃原来的TensorFlow和Keras框架。这是为什么?
△ Jeremy Howard
且听创始人Jeremy Howard详解缘由,也相当于分析了初学者该选择什么样的框架。量子位节选编译如下:
我们为什么开始尝试PyTorch?当我们开发第二门课《面向程序员的前沿深度学习》的时候,原来选的TensorFlow和Keras框架开始让我们处处碰壁。
为什么在PyTorch上构建一个新框架?然而,对于课程的第一部分来说,PyTorch还远远谈不上是一个很好的选择。没有机器学习背景的人根本没法上手。
PyTorch没有Keras那样简单明了的API来训练模型,每个项目都需要几十行代码来实现一个神经网络的基础训练。另外,Keras的默认设置就挺有用,而PyTorch一切都需要详细设置。
不过,Keras还能更好。我们发现大家一直在Keras里犯相同的错误,例如不能在我们有需要时打乱数据,反之亦然。另外,很多新出的最佳实践并没有被纳入Keras,特别是在快速发展的自然语言处理(NLP)领域。
所以我们在想,能不能构建一个比Keras更好的东西,用来快速训练最棒的深度学习模型。
经过一些研究和探索后,我们做到了。我们构建的模型比用Keras构建的更快、更准确、更复杂,而且更少的代码写就。最近对多个领域论文进行的实现,都证明了这一点。
关键是创建一个OO分类,其中包含了所有重要的数据选择(例如预处理、增强、测试、训练和验证集、多类和单类的分类与回归等)以及模型架构的选择。
我们完成这个工作之后,就能在很大程度上自动找出模型与数据最佳的架构、预处理和训练参数。突然间,我们的工作效率大幅提升,而且很少犯错,因为一切都是自动化的。但是我们在每个阶段提供了定制化的能力,所以可以轻松尝试不同的方法。
随着工作效率的提升,我们能够尝试更多的技术,在这个过程中,我们发现了一些非常差的方法。例如,我们发现批量归一化(几乎所有最新CNN架构都用)和模型预训练及微调(每个项目也该用)的组合,可以让标准训练方式的精度下降500%。
我们稍后会逐步放出这个研究的详细情况。(我们还缺一个名字……)
— 完 —
诚挚招聘
量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。
量子位 QbitAI
վ'ᴗ' ի 追踪AI技术和产品新动态