国内计算机视觉核心期刊(计算机视觉新手如何选读论文)
国内计算机视觉核心期刊(计算机视觉新手如何选读论文)[5] Krizhevsky A Sutskever I Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.[4] Hinton G E Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. science 2006 313(5786): 504-507.[1] Hubel D H Wiesel T N. Receptive fields binocular interaction and functional architectu
从事计算机视觉领域的工作或者研究,必不可少的一件事情就是读论文,目前论文这么多,对于新手朋友们来说,该如何进行选读呢?本次来汇总一下我们的论文推荐专栏,给大家推荐各个方向,超过100篇文章,大家可以点击文末的‘往期链接’进入相关链接获取详细介绍。
作者&编辑 | 言有三
1. 初入深度学习领域当我们初入这一行的时候,需要对基本的理论有比较好的理解,为之后的学习打下基础,这里我们从模型到数据给大家推荐了一些必读的文章。
1.1 初入深度学习CV领域必读的几篇文章
[1] Hubel D H Wiesel T N. Receptive fields binocular interaction and functional architecture in the cat's visual cortex[J]. The Journal of physiology 1962 160(1): 106-154.
[2] Fukushima K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological cybernetics 1980 36(4): 193-202.
[3] LeCun Y Bottou L Bengio Y et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE 1998 86(11): 2278-2324.
[4] Hinton G E Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. science 2006 313(5786): 504-507.
[5] Krizhevsky A Sutskever I Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.
[6] Zeiler M D Fergus R. Visualizing and understanding convolutional networks[C]//European conference on computer vision. Springer Cham 2014: 818-833.
[7] Simonyan K Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556 2014.
[8] Lin M Chen Q Yan S. Network in network[J]. arXiv preprint arXiv:1312.4400 2013.
[9] Szegedy C Liu W Jia Y et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.
[10] Waibel A Hanazawa T Hinton G et al. Phoneme recognition using time-delay neural networks[J]. Backpropagation: Theory Architectures and Applications 1995: 35-61.
[11] Ciresan D C Meier U Masci J et al. Flexible high performance convolutional neural networks for image classification[C]//Twenty-Second International Joint Conference on Artificial Intelligence. 2011.
1.2【每周CV论文推荐】 初学者必须精读的5篇深度学习优化相关文章
[1] Glorot X Bengio Y. Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010: 249-256.
[2] Glorot X Bordes A Bengio Y. Deep sparse rectifier neural networks[C]//Proceedings of the fourteenth international conference on artificial intelligence and statistics. 2011: 315-323.
[3] Srivastava N Hinton G Krizhevsky A et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The journal of machine learning research 2014 15(1): 1929-1958.
[4] Springenberg J T Dosovitskiy A Brox T et al. Striving for simplicity: The all convolutional net[J]. arXiv preprint arXiv:1412.6806 2014.
[5] Ioffe S Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[J]. arXiv preprint arXiv:1502.03167 2015.
1.3【每周CV论文推荐】 CV领域中数据增强相关的论文推荐
[1] Krizhevsky A Sutskever I Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.
[2] Simonyan K Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556 2014.
[3] Chawla N V Bowyer K W Hall L O et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of artificial intelligence research 2002 16: 321-357.
[4] Zhang H Cisse M Dauphin Y N et al. mixup: Beyond empirical risk minimization[J]. arXiv preprint arXiv:1710.09412 2017.
[5] Cubuk E D Zoph B Mane D et al. AutoAugment: Learning Augmentation Policies from Data.[J]. arXiv: Computer Vision and Pattern Recognition 2018.
1.4 【每周CV论文推荐】 掌握残差网络必读的10多篇文章
[1] Schraudolph N. Accelerated gradient descent by factor-centering decomposition[J]. Technical report/IDSIA 1998 98.
[2] Raiko T Valpola H LeCun Y. Deep learning made easier by linear transformations in perceptrons[C]//Artificial intelligence and statistics. 2012: 924-932.
[3] Srivastava R K Greff K Schmidhuber J. Training very deep networks[C]//Advances in neural information processing systems. 2015: 2377-2385.
[4] He K Zhang X Ren S et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[5] Veit A Wilber M J Belongie S. Residual networks behave like ensembles of relatively shallow networks[C]//Advances in neural information processing systems. 2016: 550-558.
[6] Huang G Sun Y Liu Z et al. Deep networks with stochastic depth[C]//European conference on computer vision. Springer Cham 2016: 646-661.
[7] Orhan A E Pitkow X. Skip connections eliminate singularities[J]. arXiv preprint arXiv:1701.09175 2017.
[8] He K Zhang X Ren S et al. Identity mappings in deep residual networks[C]//European conference on computer vision. Springer Cham 2016: 630-645.
[9] Zagoruyko S Komodakis N. Wide residual networks[J]. arXiv preprint arXiv:1605.07146 2016.
[10] Xie S Girshick R Dollár P et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1492-1500.
[11] Huang G Liu Z Van Der Maaten L et al. Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4700-4708.
[12] Yang Y Zhong Z Shen T et al. Convolutional neural networks with alternately updated clique[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 2413-2422.
1.5【每周CV论文推荐】 初学高效率CNN模型设计应该读的文章
[1] Simonyan K Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556 2014.
[2] Lin M Chen Q Yan S. Network in network[J]. arXiv preprint arXiv:1312.4400 2013.
[3] Szegedy C Liu W Jia Y et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.
[4] Iandola F N Han S Moskewicz M W et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv:1602.07360 2016.
[5] Chollet F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1251-1258..
[6] Howard A G Zhu M Chen B et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861 2017.
[7] Xie S Girshick R Dollár P et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1492-1500.
[8] Shang W Sohn K Almeida D et al. Understanding and improving convolutional neural networks via concatenated rectified linear units[C]//international conference on machine learning. 2016: 2217-2225.
[9] Huang G Liu Z Van Der Maaten L et al. Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4700-4708.
2. 深度学习CV基础领域基于深度学习的发展是从一些基础领域开始的,包括图像分类,分割,检测,GAN等,所以我们肯定要学习相关的内容。
2.1【每周CV论文推荐】 初学目标检测必须要读的文章
[1] Sermanet P Eigen D Zhang X et al. Overfeat: Integrated recognition localization and detection using convolutional networks[J]. arXiv preprint arXiv:1312.6229 2013.
[2] Li H Lin Z Shen X et al. A convolutional neural network cascade for face detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 5325-5334.
[3] Girshick R Donahue J Darrell T et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 580-587.
[4] He K Zhang X Ren S et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence 2015 37(9): 1904-1916.
[5] Girshick R. Fast r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1440-1448.
[6] Ren S He K Girshick R et al. Faster r-cnn: Towards real-time object detection with region proposal networks[C]//Advances in neural information processing systems. 2015: 91-99.
[7] Dai J Li Y He K et al. R-fcn: Object detection via region-based fully convolutional networks[C]//Advances in neural information processing systems. 2016: 379-387.
[8] Lin T Y Dollár P Girshick R et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2117-2125.
2.2【每周CV论文推荐】初学深度学习图像分割必须要读的文章
[1] Long J Shelhamer E Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431-3440.
[2] Badrinarayanan V Kendall A Cipolla R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence 2017 39(12): 2481-2495.
[3] Ronneberger O Fischer P Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. Springer Cham 2015: 234-241.
[4] Krähenbühl P Koltun V. Efficient inference in fully connected crfs with gaussian edge potentials[C]//Advances in neural information processing systems. 2011: 109-117.
[5] Chen L C Papandreou G Kokkinos I et al. Semantic image segmentation with deep convolutional nets and fully connected crfs[J]. arXiv preprint arXiv:1412.7062 2014.
[6] Zheng S Jayasumana S Romera-Paredes B et al. Conditional random fields as recurrent neural networks[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1529-1537.
[7] Yu F Koltun V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv:1511.07122 2015.
[8] Liu W Rabinovich A Berg A C. Parsenet: Looking wider to see better[J]. arXiv preprint arXiv:1506.04579 2015.
[9] Zhao H Shi J Qi X et al. Pyramid scene parsing network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2881-2890.
2.3【每周CV论文推荐】 初学GAN必须要读的文章
[1] Ng A Y Jordan M I. On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes[C]//Advances in neural information processing systems. 2002: 841-848.
[2] Goodfellow I Pouget-Abadie J Mirza M et al. Generative adversarial nets[C]//Advances in neural information processing systems. 2014: 2672-2680.
[3] Radford A Metz L Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv:1511.06434 2015.
[4] Mirza M Osindero S. Conditional generative adversarial nets[J]. arXiv preprint arXiv:1411.1784 2014.
[5] Chen X Duan Y Houthooft R et al. Infogan: Interpretable representation learning by information maximizing generative adversarial nets[C]//Advances in neural information processing systems. 2016: 2172-2180.
[6] Denton E L Chintala S Fergus R. Deep generative image models using a laplacian pyramid of adversarial networks[C]//Advances in neural information processing systems. 2015: 1486-1494.
[7] Huang X Li Y Poursaeed O et al. Stacked generative adversarial networks[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). [8] Karras T Aila T Laine S et al. Progressive growing of gans for improved quality stability and variation[J]. arXiv preprint arXiv:1710.10196 2017.
2.4【每周CV论文】初学GAN图像风格化必须要读的文章
[1] Isola P Zhu J Y Zhou T et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1125-1134.
[2] Zhu J Y Park T Isola P et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2223-2232.
[3] Liu M Breuel T M Kautz J et al. Unsupervised Image-to-Image Translation Networks[C]. neural information processing systems 2017: 700-708.
[4] Choi Y Choi M Kim M et al. Stargan: Unified generative adversarial networks for multi-domain image-to-image translation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 8789-8797.
[5] Choi Y Uh Y Yoo J et al. StarGAN v2: Diverse Image Synthesis for Multiple Domains[J]. arXiv: Computer Vision and Pattern Recognition 2019.
[6] Karras T Laine S Aila T. A style-based generator architecture for generative adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 4401-4410.
[7] Karras T Laine S Aittala M et al. Analyzing and Improving the Image Quality of StyleGAN.[J]. arXiv: Computer Vision and Pattern Recognition 2019.
[8] Li T Qian R Dong C et al. BeautyGAN: Instance-level Facial Makeup Transfer with Deep Generative Adversarial Network[C]. acm multimedia 2018: 645-653.
[9] Kim J Kim M Kang H et al. U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation[C]. international conference on learning representations 2020.
3. 人脸领域计算机视觉里除了人脸图像,没有一个领域可以覆盖底层图像特征,目标检测与跟踪,图像分类和检索,图像滤波,图像分割,三维重建,风格迁移等方向,并且能够做到相互融合从而进行工业界落地,因此我们肯定要学习人脸图像。
3.1【每周CV论文推荐】 深度学习人脸检测入门必读文章
[1] Yang S Luo P Loy C C et al. Faceness-net: Face detection through deep facial part responses[J]. IEEE transactions on pattern analysis and machine intelligence 2017 40(8): 1845-1859.
[2] Li H Lin Z Shen X et al. A convolutional neural network cascade for face detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 5325-5334.
[3] Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks[K. Zhang al. 2016
[4] Jiang H Learned-Miller E. Face detection with the faster R-CNN[C]//2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017). IEEE 2017: 650-657.
[5] Wang H Li Z Ji X et al. Face R-CNN[J]. 2017.
[6] Huang L Yang Y Deng Y et al. Densebox: Unifying landmark localization with end to end object detection[J]. arXiv preprint arXiv:1509.04874 2015.
3.2【每周CV论文推荐】 初学深度学习人脸关键点检测必读文章
[1] Sun Y Wang X Tang X. Deep convolutional network cascade for facial point detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2013: 3476-3483.
[2] Zhang Z Luo P Loy C C et al. Facial landmark detection by deep multi-task learning[C]//European conference on computer vision. Springer Cham 2014: 94-108.
[3] Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks[K. Zhang al. 2016
[4] Kowalski M Naruniec J Trzcinski T. Deep alignment network: A convolutional neural network for robust face alignment[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017: 88-97.
[5] Wu W Qian C Yang S et al. Look at boundary: A boundary-aware face alignment algorithm[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 2129-2138.
[6] Jin X Tan X. Face alignment in-the-wild: A survey[J]. Computer Vision and Image Understanding 2017 162: 1-22.
3.3 【每周CV论文推荐】 初学深度学习人脸识别和验证必读文章
[1] Taigman Y Yang M Ranzato M A et al. Deepface: Closing the gap to human-level performance in face verification[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 1701-1708.
[2] Sun Y Wang X Tang X. Deep learning face representation from predicting 10 000 classes[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 1891-1898.
[3] Sun Y Chen Y Wang X et al. Deep learning face representation by joint identification-verification[C]//Advances in neural information processing systems. 2014: 1988-1996.
[4] Sun Y Wang X Tang X. Deeply learned face representations are sparse selective and robust[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 2892-2900.
[5] Schroff F Kalenichenko D Philbin J. Facenet: A unified embedding for face recognition and clustering[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 815-823.
[6] Parkhi Omkar M. Andrea Vedaldi and Andrew Zisserman. "Deep face recognition." bmvc. Vol. 1. No. 3. 2015.
[7] Wen Y Zhang K Li Z et al. A discriminative feature learning approach for deep face recognition[C]//European conference on computer vision. Springer Cham 2016: 499-515.
[8] Zhang X Fang Z Wen Y et al. Range loss for deep face recognition with long-tailed training data[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 5409-5418.
[9] Wang J Zhou F Wen S et al. Deep metric learning with angular loss[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 2593-2601.
[10] Liu Y Li H Wang X. Rethinking feature discrimination and polymerization for large-scale recognition[J]. arXiv preprint arXiv:1710.00870 2017.
3.4【每周CV论文推荐】 初学深度学习人脸属性分析必读的文章
[1] Rothe R Timofte R Van Gool L. Deep expectation of real and apparent age from a single image without facial landmarks[J]. International Journal of Computer Vision 2018 126(2-4): 144-157.
[2] Fabian Benitez-Quiroz C Srinivasan R Martinez A M. Emotionet: An accurate real-time algorithm for the automatic annotation of a million facial expressions in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 5562-5570.
[3] Liang L Lin L Jin L et al. SCUT-FBP5500: A diverse benchmark dataset for multi-paradigm facial beauty prediction[C]//2018 24th International Conference on Pattern Recognition (ICPR). IEEE 2018: 1598-1603.
[4] Liu Z Luo P Wang X et al. Deep learning face attributes in the wild[C]//Proceedings of the IEEE international conference on computer vision. 2015: 3730-3738.
[5] Lee C H Liu Z Wu L et al. MaskGAN: towards diverse and interactive facial image manipulation[J]. arXiv preprint arXiv:1907.11922 2019.
[6] Zheng X Guo Y Huang H et al. A Survey to Deep Facial Attribute Analysis[J]. arXiv preprint arXiv:1812.10265 2018.
3.5 【每周CV论文推荐】 初学活体检测与伪造人脸检测必读的文章
[1] Yang J Lei Z Li S Z. Learn convolutional neural network for face anti-spoofing[J]. arXiv preprint arXiv:1408.5601 2014.
[2] Atoum Y Liu Y Jourabloo A et al. Face anti-spoofing using patch and depth-based CNNs[C]//2017 IEEE International Joint Conference on Biometrics (IJCB). IEEE 2017: 319-328.
[3] Liu Y Jourabloo A Liu X. Learning deep models for face anti-spoofing: Binary or auxiliary supervision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 389-398.
[4] Jourabloo A Liu Y Liu X. Face de-spoofing: Anti-spoofing via noise modeling[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 290-306.
[5] Zhang S Wang X Liu A et al. A Dataset and Benchmark for Large-scale Multi-modal Face Anti-spoofing[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 919-928.
[6] Rössler A Cozzolino D Verdoliva L et al. Faceforensics : Learning to detect manipulated facial images[J]. arXiv preprint arXiv:1901.08971 2019.
[7] Wang R Ma L Juefei-Xu F et al. FakeSpotter: A Simple Baseline for Spotting AI-Synthesized Fake Faces[J]. arXiv preprint arXiv:1909.06122 2019.
3.6【每周CV论文推荐】 初学深度学习单张图像三维人脸重建需要读的文章
[1] Blanz V Vetter T. A morphable model for the synthesis of 3D faces[C]//Siggraph. 1999 99(1999): 187-194.
[2] Cao C Weng Y Zhou S et al. Facewarehouse: A 3d facial expression database for visual computing[J]. IEEE Transactions on Visualization and Computer Graphics 2013 20(3): 413-425.
[3] Tuan Tran A Hassner T Masi I et al. Regressing robust and discriminative 3D morphable models with a very deep neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 5163-5172.
[4] Chang F J Tuan Tran A Hassner T et al. Faceposenet: Making a case for landmark-free face alignment[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 1599-1608.
[5] Chang F J Tran A T Hassner T et al. ExpNet: Landmark-free deep 3D facial expressions[C]//2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018). IEEE 2018: 122-129.
[6] Jackson A S Bulat A Argyriou V et al. Large pose 3D face reconstruction from a single image via direct volumetric CNN regression[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 1031-1039.
[7] Feng Y Wu F Shao X et al. Joint 3d face reconstruction and dense alignment with position map regression network[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 534-551.
[8] Tewari A Zollhofer M Kim H et al. Mofa: Model-based deep convolutional face autoencoder for unsupervised monocular reconstruction[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 1274-1283.
[9] Zheng X Guo Y Huang H et al. A Survey to Deep Facial Attribute Analysis[J]. arXiv preprint arXiv:1812.10265 2018.
3.7【每周CV论文推荐】 人脸识别剩下的难题:从遮挡,年龄,姿态,妆造到亲属关系,人脸攻击
[1] Wang J Yuan Y Yu G. Face attention network: An effective face detector for the occluded faces[J]. arXiv preprint arXiv:1711.07246 2017.
[2] Yuan X Park I K. Face De-occlusion using 3D Morphable Model and Generative Adversarial Network[J]. arXiv preprint arXiv:1904.06109 2019.
[3] Sawant M M Bhurchandi K M. Age invariant face recognition: a survey on facial aging databases techniques and effect of aging[J]. Artificial Intelligence Review 2019 52(2): 981-1008.
[4] Ding C Tao D. A comprehensive survey on pose-invariant face recognition[J]. ACM Transactions on intelligent systems and technology (TIST) 2016 7(3): 37.
[5] Li Y Song L Wu X et al. Anti-Makeup: Learning a bi-level adversarial network for makeup-invariant face verification[C]//Thirty-Second AAAI Conference on Artificial Intelligence. 2018.
[6] Robinson J P Shao M Wu Y et al. Families in the wild (fiw): Large-scale kinship image database and benchmarks[C]//Proceedings of the 24th ACM international conference on Multimedia. ACM 2016: 242-246.
[7] Rössler A Cozzolino D Verdoliva L et al. Faceforensics: A large-scale video dataset for forgery detection in human faces[J]. arXiv preprint arXiv:1803.09179 2018.
3.8【每周CV论文推荐】换脸算法都有哪些经典的思路?
[1] Suwajanakorn S Seitz S M Kemelmacher-Shlizerman I. What makes tom hanks look like tom hanks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: 3952-3960.
[2] Thies J Zollhofer M Stamminger M et al. Face2face: Real-time face capture and reenactment of rgb videos[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 2387-2395.
[3] https://github.com/hrastnik/FaceSwap
[4] Korshunova I Shi W Dambre J et al. Fast face-swap using convolutional neural networks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 3677-3685.
[5] Jin X Qi Y Wu S. Cyclegan face-off[J]. arXiv preprint arXiv:1712.03451 2017.
[6] Korshunov P Marcel S. Deepfakes: a new threat to face recognition? assessment and detection[J]. arXiv preprint arXiv:1812.08685 2018.
[7] https://github.com/deepfakes/faceswap
4.图像质量领域图像质量领域是图像处理算法的起源,包含了很多方向,也是我们需要重点学习的内容。
4.1 【每周CV论文】深度学习图像降噪应该从阅读哪些文章开始
[1] Mao X Shen C Yang Y B. Image restoration using very deep convolutionalencoder-decoder networks with symmetric skip connections[C]//Advances in neuralinformation processing systems. 2016: 2802-2810.
[2] Zhang K Zuo W Chen Y et al. Beyond a gaussian denoiser: Residual learningof deep cnn for image denoising[J]. IEEE Transactions on Image Processing 2017 26(7): 3142-3155.
[3] Guo S Yan Z Zhang K et al. Toward convolutional blind denoising of realphotographs[C]//Proceedings of the IEEE Conference on Computer Vision andPattern Recognition. 2019: 1712-1722.
[4] Chen J Chen J Chao H et al. Image blind denoising with generative adversarial network based noise modeling[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 3155-3164.
[5] Lehtinen J Munkberg J Hasselgren J et al. Noise2noise: Learning image restoration without clean data[J]. arXiv preprint arXiv:1803.04189 2018.
[6] Lempitsky V Vedaldi A Ulyanov D et al. Deep Image Prior[C]. computer vision and pattern recognition 2018: 9446-9454.
[7] Krull A Buchholz T Jug F et al. Noise2Void - Learning Denoising From Single Noisy Images[C]. computer vision and pattern recognition 2019: 2129-2137.
[8] Batson J Royer L. Noise2Self: Blind Denoising by Self-Supervision[J]. arXiv: Computer Vision and Pattern Recognition 2019.
[9] Li S Cao X Araujo I B et al. Single Image Deraining: A Comprehensive Benchmark Analysis[C]. computer vision and pattern recognition 2019: 3838-3847.
4.2【每周CV论文】初学深度学习图像对比度增强应该要读的文章
[1] Chen Q Xu J Koltun V. Fast image processing with fully-convolutionalnetworks[C]//Proceedings of the IEEE International Conference on ComputerVision. 2017: 2497-2506.
[2] Talebi H Milanfar P. Learned perceptual image enhancement[C]//2018 IEEEInternational Conference on Computational Photography (ICCP). IEEE 2018: 1-13.
[3] Wei C Wang W Yang W et al. Deep Retinex Decomposition for Low-Light Enhancement.[C]. british machine vision conference 2018.
[4] Ignatov A Kobyshev N Timofte R et al. DSLR-quality photos on mobiledevices with deep convolutional networks[C]//Proceedings of the IEEEInternational Conference on DSLR-quality photos on mobile Computer Vision.2017: 3277-3285.
[5] Gharbi M Chen J Barron J T et al. Deep bilateral learning for real-timeimage enhancement[J]. ACM Transactions on Graphics (TOG) 2017 36(4): 118.
[6] Hu Y He H Xu C et al. Exposure: A white-box photo post-processing framework[J]. ACM Transactions on Graphics (TOG) 2018 37(2): 26.
[7] Chen C Chen Q Xu J et al. Learning to see in the dark[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 3291- 3300.
4.3【每周CV论文】初学深度学习图像超分辨应该要读的文章
[1] Dong C Loy C C He K et al. Image super-resolution using deep convolutional networks[J]. IEEE transactions on pattern analysis and machine intelligence 2015 38(2): 295-307.
[2] Shi W Caballero J Huszar F et al. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network[C]. computer vision and pattern recognition 2016: 1874-1883.
[3] Johnson J Alahi A Fei-Fei L. Perceptual losses for real-time style transfer and super-resolution[C]//European conference on computer vision. Springer Cham 2016: 694-711.
[4] Ledig C Theis L Huszár F et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4681-4690.
[5] Bulat A Yang J Tzimiropoulos G. To learn image super-resolution use a gan to learn how to do image degradation first[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 185-200.
[6] Chen Y Tai Y Liu X et al. FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors[C]. computer vision and pattern recognition 2018: 2492-2501.
[7] Menon S Damian A Hu S et al. PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models[J]. arXiv: Computer Vision and Pattern Recognition 2020.
4.4【每周CV论文】初学深度学习图像修复应该要读的文章
[1] Pathak D Krahenbuhl P Donahue J et al. Context encoders: Feature learning by inpainting[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 2536-2544.
[2] Iizuka S Simo-Serra E Ishikawa H. Globally and locally consistent image completion[J]. ACM Transactions on Graphics (ToG) 2017 36(4): 1-14.
[3] Yu J Lin Z Yang J et al. Generative image inpainting with contextual attention[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 5505-5514.
[4] Liu G Reda F A Shih K J et al. Image inpainting for irregular holes using partial convolutions[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 85-100.
[5] Nazeri K Ng E Joseph T et al. EdgeConnect: Structure Guided ImageInpainting using Edge Prediction[C]//Proceedings of the IEEE InternationalConference on Computer Vision Workshops. 2019: 0-0.
[6] Wan Z Zhang B Chen D et al. Bringing Old Photos Back to Life[J]. 2020..
5.如何交流学习这些内容5.1 论文下载
开始的时候我们将论文放在了git项目中,但是随着数量增加不合适再放到git中,大家可以自己下载,也可以在我们的知识星球中下载。
5.2 文章解读
各个方向的文章解读也在有三AI知识星球中,目前已经有超过300期。
有三AI知识星球的加入方式为阅读下文详细了解,9月因为在全国各地做线下活动,所以文章解读更新会较少。
「杂谈」为什么邀请大家加入硬核知识星球有三AI
「年终总结」2019年有三AI知识星球做了什么,明年又会做什么
5.3 有三的书
另外一些方向也已经出版成书,比如人脸方向,模型方向,可以大家去我的三本书中阅读。
言有三新书来袭,业界首次深入全面讲解深度学习人脸图像算法
言有三新书来袭!业界首次深入全面讲解深度学习模型设计
言有三新书预售,不贵,有料