快捷搜索:  汽车  科技

pwm调整的原理(读完此文得心应手)

pwm调整的原理(读完此文得心应手)下图是输出波形, 15V -6V因为本人对开关电源一无所知,所做的东西全部为实验性质,务请读者不要效仿,以免造成不必要的损失。这个驱动板,主要是用来驱动大功率全桥硬开关模式的开关电源,当然,也可以用于驱动半桥电路,甚至可以驱动双管正激式开关电源。电路是的Uf是电压反馈,也就是稳压用的,这由494的其中一个误差放大器来承担;而494的另一个误差放大器则用来控制输出电流,见图中的If,我这里是用负压控制的,当If端的电压从0减小到-0.2V时,PWM开始控制占空比,以控制输出电流。要使电路在多少安培电流时起控,可以调整电流取样电阻的阻值来实现。做这么个板子,除了电路外,还必须要考虑的是PCB上的安全隔离问题。

关于PWM话题,很多电源工程师工作中会遇到不同的问题。其实找到问题的根源,才能对症下药。下面给大家分享几篇不错的文章,供大家学习~

老寿版主再出手 巧用TL494搞定PWM多用驱动板

去年就想做这么一个驱动板,可能是因为忙,到最近才做出来。这是一个用TL494做PWM控制的多用途驱动卡,电路是常规的,没有什么技术含量。


电路由二部分组成,图中上面是494/PWM控制部分,为了简单起见,我用494直接来推动TLP250光藕,这样,输出的波形就有保障。现在的频率约28K,输出波形为 15V和-6V,既可以驱动MOS管,也可以驱动IGBT管。

下面部分是辅助电源,AC220V输出经整流滤波送到TNY275控制芯片,这是一个单片反激式小功率开关电源,一共输出4路互相隔离的电源:一路为15V,经78L12稳压供给TL494,另三路为21V,分别送TLP250的输出端,为光藕内部的输出电路供电。


这个驱动板,主要是用来驱动大功率全桥硬开关模式的开关电源,当然,也可以用于驱动半桥电路,甚至可以驱动双管正激式开关电源。

电路是的Uf是电压反馈,也就是稳压用的,这由494的其中一个误差放大器来承担;而494的另一个误差放大器则用来控制输出电流,见图中的If,我这里是用负压控制的,当If端的电压从0减小到-0.2V时,PWM开始控制占空比,以控制输出电流。要使电路在多少安培电流时起控,可以调整电流取样电阻的阻值来实现。


做这么个板子,除了电路外,还必须要考虑的是PCB上的安全隔离问题。

因为本人对开关电源一无所知,所做的东西全部为实验性质,务请读者不要效仿,以免造成不必要的损失。

pwm调整的原理(读完此文得心应手)(1)

pwm调整的原理(读完此文得心应手)(2)

下图是输出波形, 15V -6V

pwm调整的原理(读完此文得心应手)(3)

下图是PWM起控时的波形:

pwm调整的原理(读完此文得心应手)(4)

最大占空比时的死区时间,不同厂家出的芯片,死区时间大大不同,原装的一般在1.8US左右。

pwm调整的原理(读完此文得心应手)(5)

TNY275的D极波形:

pwm调整的原理(读完此文得心应手)(6)

pwm调整的原理(读完此文得心应手)(7)

pwm调整的原理(读完此文得心应手)(8)

这是电原理图,仅供参考:

pwm调整的原理(读完此文得心应手)(9)

原文链接:https://www.dianyuan.com/article/13939.html

PWM调光技术:如何优化LED色彩稳定度

本文探讨提供发光二极体(LED)调光的方法,分析LED调光对其长期性能及所发射出光的色彩稳定性之影响,并特别探讨如何结合使用线性恒流稳流器(CCR)及数位电晶体来提供脉冲宽度调变(PWM)调光。

PWM为改变LED光输出首要方法

光要多少才足够?要求的发光量通常由所处环境与用途决定。就会议室而言,一般圆桌会议时的照明可能非常亮;但若使用投影系统来观看会议材料,会议室的光就可能会调暗很多;起居室的照明通常会被调节从而营造恰当的氛围;而汽车仪表板的背光则通常根据日间或夜间驾驶来自动调节。

光源已从非常易于调节的白炽灯转向要求以特殊电路提供不同光等级的萤光灯。LED是业界出现的最新一代光源,要求采用新的电子电路来改变光等级。改变LED光输出的方法有两种,第一种是减小流经LED的电流,而LED发射的光量与流经LED的电流成正比;第二种方法是为LED提供脉波电流,LED发射出的光与工作周期(Duty Cycle)成正比。

使用减小电流的方法进行LED调光类似于大多数白炽灯泡使用的调光方法。这种减小电流的方法在为数不多的应用中可以接受,但随着光等级降低,LED发出的光色彩也根据电流而变化。电流较小时,色度(Chromaticity)朝向黄色变化。图1显示不同电流时的典型色度变化。

pwm调整的原理(读完此文得心应手)(10)

白炽灯泡的亮度能够藉减小电流的方法来调光至低于完整亮度的1%,因为白炽灯是藉由电流流过灯丝,使灯丝发热进而发光。但使用减小电流的方法,极难将LED亮度调至低于完整亮度的5%,因为所需的电压势会导致矽结点破裂并开始导电。LED是二极体,随着结点破裂,它就像是电子雪崩,电阻急速下降。要提供足够电压,使LED以极低电流导电非常困难。图2显示LED在不同正向电压(V)条件下的典型正向电流的曲线。

pwm调整的原理(读完此文得心应手)(11)

为LED提供脉波电流的方法也称作PWM,这种方法已经成为改变光等级的首选方法。LED本身是矽元件,对应流经它们的电流导通及关闭而快速地导通和关闭。开关时间在100奈秒(ns)等级,相当于最大频率10MHz。应用通常以100Hz~100kHz的频率工作。频率低于100Hz时,人眼会观察到LED光闪烁。频率在500Hz~20kHz之间时,电路可能产生能听到的杂讯。调光是通过在单个开关周期的某部分时间内将LED导通;而在此开关周期的其余部分时间内,将LED关闭来实现。这种导通关闭周期称作工作周期(D),其表达方式为LED导通时间(TON)除以整个开关/导通周期时间(TS)(图3)。

pwm调整的原理(读完此文得心应手)(12)

LED导通时间与光输出息息相关

在LED导通期间,流经LED的电流保持恒定,使LED发射的光恒定,且无色度(色彩)变化。亮度与LED导通时间所占的百分比成正比。

可以在LED的串列使用安森美半导体(On Semiconductor)的双端CCR(如NSI45020AZT1G)及双极结晶体管(BJT)(如MMBT3904LT1G)来配置图4所示的简单电路,用于汽车仪表板背光。由两颗4.7kΩ电阻(R1,R2)构成的简单偏置电路置于双极结晶体管的基极。电阻值10Ω、精度1%的电阻(R3)置于双极结晶体管的射极脚,用来感测电流。测量电阻R3两端的电压即可简单地得出对应的电流(200毫伏特=20毫安培),R3仅用于测量电路电流,设计完成后即不需要它。电路的供电电压范围为直流5~20伏特。由微控制器(MCU)提供的5伏特控制电压,通过电阻R1施加在双极结晶体管的基极,并将双极结晶体管导通。CCR会自动地将流经LED的电流维持在20毫安培。

pwm调整的原理(读完此文得心应手)(13)

可以恰当选择R1和R2的电阻值,使其匹配驱动电路。双极结晶体管通常在0.5伏特电压时开始导通。若R1=R2(图4中均为4.7kΩ),那么这分压电路就要求大于1伏特的电压来将双极结晶体管导通。若R1=10kΩ且R2=47kΩ,这电路就只需要大于0.6伏特的电压来导通。

控制讯号的工作频率为300Hz,脉波宽度为30微秒(μs)。随着脉波宽度增加,LED导通的总时间也会延长,并提升光输出。在脉波接近零电平时,光输出也将接近零。图5显示不同工作周期条件下的流明输出曲线。

pwm调整的原理(读完此文得心应手)(14)

任何电路开关电流可能都存在电磁干扰(EMI)问题。由于LED和CCR的开关速度极快,不到100奈秒,为消除EMI弊病,可在电路中增加一颗电容。在上述图4所示的基本电路中,双极结晶体管的基极与射极之间增加一颗100nF电容,使流经电路的电流上升沿(Rising Edge)及下降沿(Falling Edge)的斜坡延长1.5微秒(图6)。CCR导通关闭电流的斜坡可以由电阻R1和电容C1的值来控制……

原文链接:https://www.dianyuan.com/article/14145.html

PWM整流控制技术的在线式UPS

1 概述


PWM前端控制整流由于具有直流电压的变化,输入功率因数校正(PFC)和输入电流谐波控制的能力等优点,被广泛用于三相交直交电压系统。由前端整流器、直流电容,以及逆变器组成的三相交直交电压系统广泛用于在线式UPS。基于DSP控制的在线式UPS的结构图如图1所示。

pwm调整的原理(读完此文得心应手)(15)

图1 基于DSP控制的在线式UPS的结构图

图1中,主电路由输入变压器、输入滤波电路、电压和电流检测电路、蓄电池、功率电路、输出滤波电路和静态开关等组成。其中功率电路包括三个部分,即输入的PFC、三相全桥逆变器、DC/DC部分。电路信号采用TMS320C2812控制。该控制器是TI软件公司开发的,可方便地进行汇编,执行控制程序和错误检查。一般PFC升压整流控制器通常有两个反馈回路,外部电压环路和内在电流环路。电压调节器产生电流控制的d轴电流,而在q轴电流控制是零的单位功率因数,其控制如图2所示。

pwm调整的原理(读完此文得心应手)(16)

图2 带负载功率反馈的传统PWM控制系统


在正常工作条件下,稳压器输出稳定的直流母线电压和d轴电流控制,但是逆变器负荷不均衡,就会产生波动的直流电压,因此整流器在不平衡负载下会造成前端总谐波失真(THD)的输入电流。

相关研究表明直流电压滤波问题所造成的原因是由于不平衡的逆变器的负载电流和不平衡的输入电压造成的,然而,他们的控制目标不是提高电能质量的投入,而是尽量减少直流环节电压。

一些研究人员已用开关函数概念的电力转换器,显示存在的谐波直流母线电压。本文将用这些已量化的工程来处理谐波波动问题,仿真和实验结果将有效地证明本文提出的新型控制技术。

2 系统分析

一个标准的基于DSP控制在线式UPS系统如图3所示。系统由推动型的前端整流器、直流链接、电压源逆变器构成。这两个功率转换器使用标准的空间矢量PWM控制,产生快速电压调节与总谐波失真最小化控制逆变器。

pwm调整的原理(读完此文得心应手)(17)

图3 基于DSP控制的三相整流逆变控制系统模型


影响负载平衡分析如下。该逆变器的输入:

pwm调整的原理(读完此文得心应手)(18)


式中,SA SB和SC是交换功能的交换机顶端的三个逆变器的开关,如下:

pwm调整的原理(读完此文得心应手)(19)


扩大这些功能交换,假设标准正弦相位电流如下:

pwm调整的原理(读完此文得心应手)(20)


式中,AK是k阶的组成部分。AK≡0的所有三角变换后,可以得出:

pwm调整的原理(读完此文得心应手)(21)


式中,Iinv0是直流分量的逆变器输入电流;Iinvn是n阶部分的电流。通过公式(4)可看到,IoutA=IoutB=IoutC和ΦA=ΦB=ΦC 同时有Iinvn=0 如果n>0三相负载电流是平衡的。否则,交流成分存在会造成连锁反应……

原文链接:https://www.dianyuan.com/article/13919.html

专家解析:SPWM工作原理透彻分析

1.1 SPWM工作原理

对于电压型逆变器来说需要解决的一个关键问题是如何根据给定的参考量发出PWM开关信号。三种调制方式中,方波控制存在占空比不可调,调压范围不够宽,保护功能不够完善,噪声比较大等缺点,应用较少;SVPWM调制主要用于电动机调速;SPWM (Sinusoidal PWM)法是一种使用较广泛的PWM法,本文就以其为调制方法,进行逆变器的分析和研究。

1.1.1 SPWM控制的基本原理

在采样控制理论中有一个重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量即指窄脉冲的面积。这里所说的效果基本相同,是指环节的输出响应波形基本相同。即当它们分别加在具有惯性的同一个环节上时,其输出响应基本相同。如果把各输出波形用傅立叶变换分析,则其低频段非常接近,仅在高频段略有差异。上述原理可以称之为面积等效原理,它是PWM控制技术的重要理论基础。

pwm调整的原理(读完此文得心应手)(22)

把图2-1a的正弦半波分成N等份,就可以把正弦半波看成是由N个彼此相连的脉冲序列所组成的波形。这些脉冲宽度相等,都等于 /N,但幅值不等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。

如果把上述脉冲序列利用相同数量的等幅而不等宽的矩形脉冲代替,使矩形脉冲和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,就得到图2-1b所示的脉冲序列 这就是PWM波形。可以看出各脉冲的幅值相等,而宽度是按正弦波规律变化的。根据面积等效原理,PWM波形和正弦半波是等效的。对于正弦波的负半周,也可以用同样的方法得到PWM波形。像这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称SPWM(Sinusoidal PWM)波形。要改变等效输出的正弦波的幅值时,只要按照同一比例系数改变上述各脉冲的宽度即可。2.1.2 PWM 波的生成方法。

SPWM波的控制分为计算法和调制法。计算法是给出了逆变电路的正弦波输出频率、

幅值和半个周期内的脉冲数,SPWM波形中各脉冲的宽度和时间间隔可以准确计算出来。按照计算的结果控制逆变电路中各个开关器件的通断,以便得到所需要的PWM波。调制法是把希望输出的波形作为调制信号,把接受调制的信号作为载波,通过信号波的调制得到所期望的PWM波形。通常采用等腰三角波或锯齿波作为载波,其中等腰三角波应用最多。

因为等腰三角波上任一点的水平宽度和高度成线性关系且左右对称,当它与任何一个平缓变化的调制信号波相交时,如果在交点时刻对电路中开关器件的通断进行控制,就可以得到宽度正比于信号波幅值的脉冲,这正好符合PWM控制的要求。在调制信号波为正弦波时,所得到的就是SPWM波形。在实际应用中可以用模拟电路构成三角波载波和正弦调制波发生电路,用比较器来确定它们的交点,在交点时刻对功率开关器件的通断进行控制,就可以生成SPWM波形。

由于计算法较繁琐,计算量大,较少使用。而模拟电路结构复杂,难以实现精确的控制。因此,目前SPWM波形的生成和控制多用微机来实现。下面介绍几种常用的用软件生成SPWM波形的算法,并分析它们的特点 。

1 自然采样法

在正弦波和三角波的自然交点时刻控制功率开关器件的通断,称为自然采样法。正弦波在不同相位角时值不同,因而与三角波相交所得到的脉冲宽度不同。可知这种算法计算量比较大,需花费较多的时间,因而难以在微处理器中实现……

原文链接:https://www.dianyuan.com/article/13815.html

基于SPWM的交流稳压电源设计方案

0 引言

随着现代科学技术的进步,对供电质量越来越提出新的高要求,像手机基站、精密仪器、精密加工设备、雷达系统等对供电的质量提出了更高的要求,比如白炽灯输出电压改变约0.3%就会引起人们的不适感觉,而且带微处理器控制器和电力电子装置的负载设备越来越多,这些设备对许多类型的电能质量扰动都很敏感。

传统的稳压器因为其自身的缺点不能够满足现在的技术要求。由于电力电子技术的快速发展,MOSFET 等大功率开关器件的成熟应用,逆变器技术以及PWM 技术都得到了极广泛的应用。

本设计交流稳压电源的基本要求是:输入电压为交流24V;输出电压为交流36V;要求输出有200mA的电流。本文基于逆变技术及PWM技术,采用SPWM控制方式从单片机最小系统设计、整流及电源电路、DC-DC 升压电路、SPWM 转换电路、H 桥驱动电路等几个方面出发,设计了交流稳压电源的各个部分内容,同时通过电压、频率采样电路、A/D 转换电路、数码管显示电路等几个方面的设计增加了系统的电压、频率显示功能。

设计了单片机及其外围电路,并结合一套合理的程序算法,给出了一套交流稳压电源软硬件解决方案。

1 SPWM 控制的基本原理

SPWM 法是一种比较成熟的、目前使用较广泛的PWM 法。SPWM 就是以采样控制理论中的冲量等效原理为理论依据的(冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同)。

用脉冲宽度按正弦规律变化而和正弦波等效的PWM 波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值。

在采样控制理论中有一个重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上,其效果基本相同。冲量指窄脉冲的面积。效果基本相同指环节的输出响应波形基本相同。如把各输出波形用傅氏变换分析,则其低频特性非常接近,仅在高频段略有差异。这一结论是PWM控制的重要理论基础。如图1(a)所示,将正弦半波看成由N 个彼此相联的脉冲组成的波形。这些脉冲宽度相等,但幅度不等,且脉冲的顶部为曲线,各脉冲的幅值按正弦规律变化。如果将上述脉冲序列用同样数量的等幅不等宽的矩形脉冲序列代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积相等,就得到图1(b)所示的脉冲序列。像这种脉冲宽度按正弦规律变化而和正弦波等效的波形即为SPWM波形。

pwm调整的原理(读完此文得心应手)(23)

图 1 PWM控制的基本原理图

得到 SPWM的具体实现方法可以是用一个正弦调制波和一个等腰三角载波相交,由它们的交点确定逆变器的开关模式。如图2 所示,正弦波大于三角波时,使相应的开关器件导通;当正弦波小于三角载波时,使相应的开关器件截止。

pwm调整的原理(读完此文得心应手)(24)

图 2 SPWM控制的基本原理图

2 系统的总体设计

本设计包括单片机最小系统、整流及电源电路、DC-DC 升压电路、SPWM 转换电路、H 桥逆变电路等几个模块,由于系统需要完成输出电压和频率的检测和显示,因此需要设计电压、频率采样电路、A/D 转换电路、数码管显示电路等。系统的总体设计框图如图3 所示……

原文链接:https://www.dianyuan.com/article/13745.html

意犹未尽,查看更多精彩文章→→https://www.dianyuan.com/eestar/

更多精彩内容→→

快速入门PWM的技术难点,从此开始!

六篇PWM文章献给2023年爱学习的你

关于PWM,七篇文章帮你快速上手

这样理解PWM就对了!

学了那么多年的单片机,你真的学会了吗?

猜您喜欢: