大家称赞的日志分析工具:别只会搜日志了 求你懂点原理吧
大家称赞的日志分析工具:别只会搜日志了 求你懂点原理吧DSL: Domain Specific LanguageGET bank/_search { "query":{"match_all": {}} "sort": [ {"account_number": "asc" } ] } 示例:查询出所有,先按照 accout_number 升序排序,再按照 balance 降序排序属性值说明:took – ES 执行搜索的时间 ( 毫秒 ) timed_out – ES 是否超时 _shards – 有多少个分片被搜索了,以及统计了成功/失败/跳过的搜索的分片 max_score – 最高得分 hits.total.value - 命中多少条记录 hits.sort - 结果的排序 key 键,没有则按 score 排序 hits._score -
可以从返回结果中看到 bank 索引有 1000 条数据,占用了 440.2kb 存储空间。
回到顶部
五、高阶检索玩法5.1 两种查询方式5.1.1 URL 后接参数GET bank/_search?q=*&sort=account_number: asc
```/_search?q=*&sort=account_number: asc`
查询出所有数据,共 1000 条数据,耗时 1ms,只展示 10 条数据 ( ES 分页 )
属性值说明:
took – ES 执行搜索的时间 ( 毫秒 )
timed_out – ES 是否超时
_shards – 有多少个分片被搜索了,以及统计了成功/失败/跳过的搜索的分片
max_score – 最高得分
hits.total.value - 命中多少条记录
hits.sort - 结果的排序 key 键,没有则按 score 排序
hits._score - 相关性得分
参考文档:
https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started-search.html
5.1.2 URL 加请求体进行检索 ( QueryDSL )
请求体中写查询条件
语法:
GET bank/_search
{
"query":{"match_all": {}}
"sort": [
{"account_number": "asc" }
]
}
示例:查询出所有,先按照 accout_number 升序排序,再按照 balance 降序排序
5.2 详解 QueryDSL 查询DSL: Domain Specific Language
5.2.1 全部匹配 match_all示例:查询所有记录,按照 balance 降序排序,只返回第 11 条记录到第 20 条记录,只显示 balance 和 firstname 字段。
GET bank/_search
{
"query": {
"match_all": {}
}
"sort": [
{
"balance": {
"order": "desc"
}
}
]
"from": 10
"size": 10
"_source": ["balance" "firstname"]
}
5.2.2 匹配查询 match
- 基本类型 ( 非字符串 ) ,精确匹配
GET bank/_search
{
"query": {
"match": {"account_number": "30"}
}
}
- 字符串,全文检索
GET bank/_search
{
"query": {
"match": {
"address": "mill road"
}
}
}
全文检索按照评分进行排序,会对检索条件进行分词匹配。
查询 address 中包含 mill 或者 road 或者 mill road 的所有记录,并给出相关性得分。
查到了 32 条记录,最高的一条记录是 Address = "990 Mill Road",得分:8.926605. Address="198 Mill Lane" 评分 5.4032025,只匹配到了 Mill 单词。
5.2.3 短语匹配 match_phase将需要匹配的值当成一个整体单词 ( 不分词 ) 进行检索
GET bank/_search
{
"query": {
"match_phrase": {
"address": "mill road"
}
}
}
查出 address 中包含 mill road 的所有记录,并给出相关性得分
5.2.4 多字段匹配 multi_matchGET bank/_search
{
"query": {
"multi_match": {
"query": "mill land"
"fields": [
"state"
"address"
]
}
}
}
multi_match 中的 query 也会进行分词。
查询 state 包含 mill 或 land 或者 address 包含 mill 或 land 的记录。
5.2.5 复合查询 bool复合语句可以合并任何其他查询语句,包括复合语句。复合语句之间可以相互嵌套,可以表达复杂的逻辑。
搭配使用 must must_not should
must: 必须达到 must 指定的条件。 ( 影响相关性得分 )
must_not: 必须不满足 must_not 的条件。 ( 不影响相关性得分 )
should: 如果满足 should 条件,则可以提高得分。如果不满足,也可以查询出记录。 ( 影响相关性得分 )
示例:查询出地址包含 mill,且性别为 M,年龄不等于 28 的记录,且优先展示 firstname 包含 Winnie 的记录。
GET bank/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"address": "mill"
}
}
{
"match": {
"gender": "M"
}
}
]
"must_not": [
{
"match": {
"age": "28"
}
}
]
"should": [
{
"match": {
"firstname": "Winnie"
}
}
]
}
}
}
5.2.6 filter 过滤
不影响相关性得分,查询出满足 filter 条件的记录。
在 bool 中使用。
GET bank/_search
{
"query": {
"bool": {
"filter": [
{
"range": {
"age": {
"gte":18
"lte":40
}
}
}
]
}
}
}
5.2.7 term 查询
匹配某个属性的值。
全文检索字段用 match,其他非 text 字段匹配用 term
keyword:文本精确匹配 ( 全部匹配 )
match_phase:文本短语匹配
非 text 字段精确匹配
GET bank/_search
{
"query": {
"term": {
"age": "20"
}
}
}
5.2.8 aggregations 聚合
聚合:从数据中分组和提取数据。类似于 SQL GROUP BY 和 SQL 聚合函数。
Elasticsearch 可以将命中结果和多个聚合结果同时返回。
聚合语法:
"aggregations" : {
"<聚合名称 1>" : {
"<聚合类型>" : {
<聚合体内容>
}
[ "元数据" : { [<meta_data_body>] }]?
[ "aggregations" : { [<sub_aggregation>] }]?
}
[ "聚合名称 2>" : { ... }]*
}
- 示例 1:搜索 address 中包含 big 的所有人的年龄分布 ( 前 10 条 ) 以及平均年龄,以及平均薪资
GET bank/_search
{
"query": {
"match": {
"address": "mill"
}
}
"aggs": {
"ageAggr": {
"terms": {
"field": "age"
"size": 10
}
}
"ageAvg": {
"avg": {
"field": "age"
}
}
"balanceAvg": {
"avg": {
"field": "balance"
}
}
}
}
检索结果如下所示:
hits 记录返回了,三种聚合结果也返回了,平均年龄 34 岁,平均薪资 25208.0,品骏年龄分布:38 岁的有 2 个,28 岁的有一个,32 岁的有一个
如果不想返回 hits 结果,可以在最后面设置 size:0
GET bank/_search
{
"query": {
"match": {
"address": "mill"
}
}
"aggs": {
"ageAggr": {
"terms": {
"field": "age"
"size": 10
}
}
}
"size": 0
}
- 示例 2:按照年龄聚合,并且查询这些年龄段的平均薪资
从结果可以看到 31 岁的有 61 个,平均薪资 28312.9,其他年龄的聚合结果类似。