快捷搜索:  汽车  科技

python二维数组转置(DAY5-step13Python示例说明矩阵)

python二维数组转置(DAY5-step13Python示例说明矩阵)python矩阵利用数组,并且可以实现相同的数组。Python没有实现矩阵数据类型的直接方法。第2步)它显示了一个2x3矩阵。它有两行三列。第一行内的数据,即row1,具有值2 3 4,而row2具有值5 6 7。列col1的值为2 5,col2的值为3 6,col3的值为4 7。因此,类似地,您可以将数据存储在Python中的nxn矩阵内。可以对类似矩阵的加法,减法,乘法等进行很多操作。

什么是Python矩阵?

Python矩阵是存储在行和列中的专用二维数据矩形数组。 矩阵中的数据可以是数字,字符串,表达式,符号等。矩阵是可用于数学和科学计算的重要数据结构之一。

Python矩阵如何运作?

二维数组中矩阵格式的数据如下:

python二维数组转置(DAY5-step13Python示例说明矩阵)(1)

第1步)

它显示了一个2x2矩阵。它有两行两列。矩阵内的数据是数字。 row1的值为2 3,row2的值为4 5。列即col1的值为2 4,而col2的值为3 5。

第2步)

它显示了一个2x3矩阵。它有两行三列。第一行内的数据,即row1,具有值2 3 4,而row2具有值5 6 7。列col1的值为2 5,col2的值为3 6,col3的值为4 7。

因此,类似地,您可以将数据存储在Python中的nxn矩阵内。可以对类似矩阵的加法,减法,乘法等进行很多操作。

Python没有实现矩阵数据类型的直接方法。

python矩阵利用数组,并且可以实现相同的数组。

  • 使用嵌套列表数据类型创建Python矩阵
  • 使用Python Numpy包中的数组创建Python矩阵
使用嵌套列表数据类型创建Python Matrix

在Python中,使用列表数据类型表示数组。因此,现在将利用该列表创建一个python矩阵。

我们将创建一个3x3矩阵,如下所示:

python二维数组转置(DAY5-step13Python示例说明矩阵)(2)

  • 矩阵有3行3列。
  • 列表格式的第一行如下:[8 14,-6]
  • 列表中的第二行将是:[12 7 4]
  • 列表中的第三行将是:[-11 3 21]

包含所有行和列的列表内的矩阵如下所示:

List = [[Row1] [Row2] [Row3] ... [RowN]]

因此,根据上面列出的矩阵,具有矩阵数据的列表类型如下:

M1 = [[8 14 -6] [12 7 4] [-11 3 21]]使用列表读取Python Matrix中的数据。

我们将利用上面定义的矩阵。 该示例将读取数据,打印矩阵,显示每行的最后一个元素。

示例:打印矩阵

M1 = [[8 14 -6] [12 7 4] [-11 3 21]] #To print the matrix print(M1)

Output:

The Matrix M1 = [[8 14 -6] [12 7 4] [-11 3 21]]

示例2:读取每一行的最后一个元素。

M1 = [[8 14 -6] [12 7 4] [-11 3 21]] matrix_length = len(M1) #To read the last element from each row. for i in range(matrix_length): print(M1[i][-1])

Output:

-6 4 21

示例3:打印矩阵中的行

M1 = [[8 14 -6] [12 7 4] [-11 3 21]] matrix_length = len(M1) #To print the rows in the Matrix for i in range(matrix_length): print(M1[i])

Output:

[8 14 -6] [12 7 4] [-11 3 21]使用嵌套列表添加矩阵

我们可以轻松地添加两个给定的矩阵。 此处的矩阵将以列表形式显示。 让我们来研究一个示例,该示例将注意添加给定的矩阵。

Matrix 1:

M1 = [[8 14 -6] [12 7 4] [-11 3 21]]

Matrix 2 :

M2 = [[3 16 -6] [9 7 -4] [-1 3 13]]

最后将初始化一个矩阵,该矩阵将存储M1 M2的结果。

Matrix 3 :

M3 = [[0 0 0] [0 0 0] [0 0 0]]

示例:添加矩阵

作为补充,矩阵将使用for循环,该循环将遍历给定的两个矩阵。

M1 = [[8 14 -6] [12 7 4] [-11 3 21]] M2 = [[3 16 -6] [9 7 -4] [-1 3 13]] M3 = [[0 0 0] [0 0 0] [0 0 0]] matrix_length = len(M1) #To Add M1 and M2 matrices for i in range(len(M1)): for k in range(len(M2)): M3[i][k] = M1[i][k] M2[i][k] #To Print the matrix print("The sum of Matrix M1 and M2 = " M3)

Output:

The sum of Matrix M1 and M2 = [[11 30 -12] [21 14 0] [-12 6 34]]使用嵌套列表的矩阵乘法

要相乘矩阵,我们可以在两个矩阵上使用for循环,如下面的代码所示:

M1 = [[8 14 -6] [12 7 4] [-11 3 21]] M2 = [[3 16 -6] [9 7 -4] [-1 3 13]] M3 = [[0 0 0] [0 0 0] [0 0 0]] matrix_length = len(M1) #To Multiply M1 and M2 matrices for i in range(len(M1)): for k in range(len(M2)): M3[i][k] = M1[i][k] * M2[i][k] #To Print the matrix print("The multiplication of Matrix M1 and M2 = " M3)

Output:

The multiplication of Matrix M1 and M2 = [[24 224 36] [108 49 -16] [11 9 273]]使用Python Numpy包中的数组创建Python矩阵

python库Numpy帮助处理数组。 与列表相比,Numpy处理数组要快一些。

要使用Numpy,您需要先安装它。 请按照下面给出的步骤安装Numpy。

第1步)

安装Numpy的命令是:

pip install NumPy

第2步)

要在代码中使用Numpy,必须将其导入。

import NumPy

步骤3)

您还可以使用别名导入Numpy,如下所示:

import NumPy as np

我们将利用Numpy的array()方法创建一个python矩阵。

示例:Numpy中的数组以创建Python矩阵

import numpy as np M1 = np.array([[5 -10 15] [3 -6 9] [-4 8 12]]) print(M1)

Output:

[[ 5 -10 15] [ 3 -6 9] [ -4 8 12]]使用Numpy.Array()进行矩阵运算

可以完成的矩阵运算是加法,减法,乘法,转置,读取矩阵的行,列,对矩阵进行切片等。在所有示例中,我们将使用array()方法。

矩阵加法

为了对矩阵执行加法运算,我们将使用numpy.array()创建两个矩阵,并使用( )运算符将它们相加。

Example:

import numpy as np M1 = np.array([[3 6 9] [5 -10 15] [-7 14 21]]) M2 = np.array([[9 -18 27] [11 22 33] [13 -26 39]]) M3 = M1 M2 print(M3)

Output:

[[ 12 -12 36] [ 16 12 48] [ 6 -12 60]]

矩阵减法

为了对矩阵进行减法,我们将使用numpy.array()创建两个矩阵,并使用(-)运算符将它们相减。

Example:

import numpy as np M1 = np.array([[3 6 9] [5 -10 15] [-7 14 21]]) M2 = np.array([[9 -18 27] [11 22 33] [13 -26 39]]) M3 = M1 - M2 print(M3)

Output:

[[ -6 24 -18] [ -6 -32 -18] [-20 40 -18]]

矩阵乘法

首先将使用numpy.arary()创建两个矩阵。 若要将它们相乘,可以使用numpy dot()方法。 Numpy.dot()是矩阵M1和M2的点积。 Numpy.dot()处理2D数组并执行矩阵乘法。

Example:

import numpy as np M1 = np.array([[3 6] [5 -10]]) M2 = np.array([[9 -18] [11 22]]) M3 = M1.dot(M2) print(M3)

Output:

[[ 93 78] [ -65 -310]]

矩阵转置

通过将行更改为列,将列更改为行来计算矩阵的转置。 Numpy的transpose()函数可用于计算矩阵的转置。

Example:

import numpy as np M1 = np.array([[3 6 9] [5 -10 15] [4 8 12]]) M2 = M1.transpose() print(M2)

Output:

[[ 3 5 4] [ 6 -10 8] [ 9 15 12]]

矩阵切片(Slicing

切片将根据给定的开始/结束索引从矩阵中返回元素。

  • 切片的语法是-[start:end]
  • 如果未指定起始索引,则将其视为0。例如[:5],则表示为[0:5]。
  • 如果未通过结尾,则将其作为数组的长度。
  • 如果开始/结尾具有负值,它将从数组的结尾开始切片。

在对矩阵进行切片之前,让我们首先了解如何将切片应用于简单数组。

import numpy as np arr = np.array([2 4 6 8 10 12 14 16]) print(arr[3:6]) # will print the elements from 3 to 5 print(arr[:5]) # will print the elements from 0 to 4 print(arr[2:]) # will print the elements from 2 to length of the array. print(arr[-5:-1]) # will print from the end i.e. -5 to -2 print(arr[:-1]) # will print from end i.e. 0 to -2

Output:

[ 8 10 12] [ 2 4 6 8 10] [ 6 8 10 12 14 16] [ 8 10 12 14] [ 2 4 6 8 10 12 14]

现在让我们在矩阵上实现切片。 对矩阵执行切片

语法将为M1 [row_start:row_end,col_start:col_end]

  • 第一个开始/结束将针对该行,即选择矩阵的行。
  • 第二个开始/结束将用于该列,即选择矩阵的列。

我们将使用的矩阵M1如下:

M1 = np.array([[2 4 6 8 10] [3 6 9 -12 -15] [4 8 12 16 -20] [5 -10 15 -20 25]])

共有4行。 索引从0到3。第0行是[2 4 6 8 10],第1行是[3 6 9,-12,-15],后跟第二和第三。

矩阵M1具有5列。 索引从0到4。第0列的值为[2 3 4 5],第1列的值为[4 6 8,-10],后跟第2,第3,第4和第5。

这是一个示例,显示了如何使用切片从矩阵获取行和列数据。 在示例中,我们要打印第一行和第二行,对于列,我们需要第一列,第二列和第三列。 为了获得该输出,我们使用了:M1 [1:3,1:4]

Example:

import numpy as np M1 = np.array([[2 4 6 8 10] [3 6 9 -12 -15] [4 8 12 16 -20] [5 -10 15 -20 25]]) print(M1[1:3 1:4]) # For 1:3 it will give first and second row. #The columns will be taken from first to third.

Output:

[[ 6 9 -12] [ 8 12 16]]

示例:要打印所有行和第三列

import numpy as np M1 = np.array([[2 4 6 8 10] [3 6 9 -12 -15] [4 8 12 16 -20] [5 -10 15 -20 25]]) print(M1[: 3]) # This will print all rows and the third column data.

Output:

[ 8 -12 16 -20]

示例:打印第一行和所有列

import numpy as np M1 = np.array([[2 4 6 8 10] [3 6 9 -12 -15] [4 8 12 16 -20] [5 -10 15 -20 25]]) print(M1[:1 ]) # This will print first row and all columns

Output:

[[ 2 4 6 8 10]]

示例:打印前三行和前2列

import numpy as np M1 = np.array([[2 4 6 8 10] [3 6 9 -12 -15] [4 8 12 16 -20] [5 -10 15 -20 25]]) print(M1[:3 :2])

Output:

[[2 4] [3 6] [4 8]]访问NumPy矩阵

我们已经看到了切片的工作原理。 考虑到这一点,我们将如何从矩阵中获取行和列。

打印矩阵的行

在示例中将打印矩阵的行。

Example:

import numpy as np M1 = np.array([[3 6 9] [5 -10 15] [4 8 12]]) print(M1[0]) #first row print(M1[1]) # the second row print(M1[-1]) # -1 will print the last row

Output:

[3 6 9] [ 5 -10 15] [ 4 8 12]

要获取最后一行,可以使用索引或-1。 例如,矩阵有3行,

所以M1 [0]会给你第一行,

M1 [1]将给您第二行

M1 [2]或M1 [-1]将为您提供第三行或最后一行。

打印矩阵的列

import numpy as np M1 = np.array([[2 4 6 8 10] [3 6 9 -12 -15] [4 8 12 16 -20] [5 -10 15 -20 25]]) print(M1[: 0]) # Will print the first Column print(M1[: 3]) # Will print the third Column print(M1[: -1]) # -1 will give you the last column

Output:

[2 3 4 5] [ 8 -12 16 -20] [ 10 -15 -20 25]摘要:

  • Python矩阵是存储在行和列中的专用二维数据矩形数组。矩阵中的数据可以是数字,字符串,表达式,符号等。矩阵是可用于数学和科学计算的重要数据结构之一。
  • Python没有实现矩阵数据类型的直接方法。可以使用嵌套列表数据类型和numpy库创建Python矩阵。
  • python库Numpy帮助处理数组。与列表相比,Numpy处理数组要快一些。
  • 可以完成的矩阵运算是加法,减法,乘法,转置,读取矩阵的行,列,对矩阵进行切片等。
  • 要添加两个矩阵,可以使用numpy.array()并使用( )运算符添加它们。
  • 若要将它们相乘,可以使用numpy dot()方法。 Numpy.dot()是矩阵M1和M2的点积。 Numpy.dot()处理2D数组并执行矩阵乘法。
  • 通过将行更改为列,将列更改为行来计算矩阵的转置。 Numpy的transpose()函数可用于计算矩阵的转置。
  • 切片矩阵将根据给定的开始/结束索引返回元素。

猜您喜欢: