快捷搜索:  汽车  科技

金属材料行业分析:金属新材料行业深度研究及投资策略

金属材料行业分析:金属新材料行业深度研究及投资策略正极材料是对锂电池能力密度和安全性影响最为显著的材料,也是各类锂电池差异最大的方 面。现阶段主要的锂电池正极材料有钴酸锂(LCO)、磷酸铁锂(LFP)、镍钴锰酸锂(NCM)、 锰酸锂(LMO)及镍钴铝酸锂(NCA)等,其中磷酸铁锂和三元材料占比最大,2020 年在 国内装机量中分别占比在 41%和 58%左右。2021 年降成本压力以及磷酸铁锂的技术进步, 三元电池占比下降至 50%左右,中长期内国内三元电池将与磷酸铁锂形成均势格局。三元动力电池高镍化趋势加速在能源变革和转型的大时代大趋势下,锂行业将逐步向资源为王、强者恒强的寡头格局演变, 已经掌控丰富锂资源(盐湖锂、硬岩锂)的企业或资源自给率较高的锂盐企业将持续受益。 在锂矿持续紧缺和价格持续上涨的趋势下,企业安全边际来自丰富的锂资源储备。我们认为三元锂电池的高能量密度优势推动其在中高端长续航新能源汽车领域快速渗透,高 镍化趋势加速将电

锂价将继续维持上行趋势,有望突破 30 万元/吨

2020 年 Q3 碳酸锂价格触底反转,Q4 在新能源汽车消费旺季推动下锂价经历了本轮超级 周期的第一波加速上涨,电碳价格上涨至 9 万元/吨,实现翻倍涨幅;2021 年上半年锂价 维持 9 万元/吨左右的价格,Q3 随着新能源车进入消费旺季后开启了第二波加速上涨,再 度实现翻倍涨幅且创历史新高,超过 18 万元/吨;Q4 以来锂价在 19-20 万元/吨持稳运行, 11 月底开启了第三轮加速上涨。2022 年,我们预计锂供需仍将维持紧平衡状态,产业链将 持续维持低库存水平,锂精矿价格有望继续上涨突破 3000 美元/吨,对应碳酸锂价格有望突 破 30 万元/吨。

锂价主要由供需的边际变化来决定。供给端,主要瓶颈在锂资源环节,碳酸锂和氢氧化锂产 能是比较宽裕的,且扩产周期比较短,因此供给的边际变化主要由锂资源决定;需求端,占 比最大且增长最快的主要是新能源汽车,因此需求的边际变化主要由新能源汽车产销量决定。 我们重点统计了有明确扩产规划和投产时间的锂资源项目,假设产能爬坡期均为 1 年,四 个季度达产进度分别为 20%、50%、80%、100%,以此计算锂资源供给端的季度边际增量。 需求端,保守假设 2022、2023 年全球新能源汽车产量增速分别为 50%、40%,乐观假设 2022、2023 年全球新能源汽车产量增速分别为 70%、50%,以此测算锂需求的季度边际 增量。

“价格锚”向“业绩锚”过渡,重点关注业绩可即期兑现的低估值企业

在能源变革和转型的大时代大趋势下,锂行业将逐步向资源为王、强者恒强的寡头格局演变, 已经掌控丰富锂资源(盐湖锂、硬岩锂)的企业或资源自给率较高的锂盐企业将持续受益。 在锂矿持续紧缺和价格持续上涨的趋势下,企业安全边际来自丰富的锂资源储备。

金属材料行业分析:金属新材料行业深度研究及投资策略(1)

3 镍:高镍电池驱动镍需求新成长

我们认为三元锂电池的高能量密度优势推动其在中高端长续航新能源汽车领域快速渗透,高 镍化趋势加速将电动各环节成本下降,高镍三元电池的综合优势将进一步体现,尤其是在欧 美等发达国家,三元电池占比将维持在超过 70%以上的高位。

高镍三元电池的能力密度随镍元素占比增加进一步提升,高价值量的钴元素占比下降也进一 步降低成本,电池高镍化的加速推进将驱动镍需求新一轮的成长。新能源汽车未来 5 年将延 续 2021 年的高速增长趋势,我们预计到 2025 年国内及海外的电动汽车产销量将分别超过 1180 万辆和 1270 万辆,渗透率分别达到 40%、25%以上。考虑国内外装机电池结构的差 异,我们预计未来五年三元电池领域对镍的需求量增速将达到年复合增长 50%以上,总需 求将从 2020 年的 6.75 万吨增长到 2025 年的 89 万吨,在镍的总消费中占比将提升至 25% 以上。

三元动力电池高镍化趋势加速

正极材料是对锂电池能力密度和安全性影响最为显著的材料,也是各类锂电池差异最大的方 面。现阶段主要的锂电池正极材料有钴酸锂(LCO)、磷酸铁锂(LFP)、镍钴锰酸锂(NCM)、 锰酸锂(LMO)及镍钴铝酸锂(NCA)等,其中磷酸铁锂和三元材料占比最大,2020 年在 国内装机量中分别占比在 41%和 58%左右。2021 年降成本压力以及磷酸铁锂的技术进步, 三元电池占比下降至 50%左右,中长期内国内三元电池将与磷酸铁锂形成均势格局。

金属材料行业分析:金属新材料行业深度研究及投资策略(2)

能量密度、安全性、循环次数、成本是动力电池最重要的四个性能指标,磷酸铁锂成本安全 性高、成本较低且循环利用次数较大,在 2018 年之前在动力电池中占比超过 60%。三元电 池(NCM 和 NCA)能量密度及循环次数均较高,成本中等,但安全性低于磷酸铁锂和钴酸 锂等,近年来随着单晶化等技术发展,安全性提升、成本降低,超越磷酸铁锂成为占比最大 的正极材料。三元正极材料按照所含元素不同主要为镍钴锰三元和镍钴铝三元材料,按照元 素含量比例不同可以划分为 111、523、622、811(镍:钴:锰(铝))等种类的三元电池。 由于镍元素具有更高的能量密度,三元正极材料已经从最初的 111 发展到 622、811 品种, 更高镍含量的 N9C0.5M0.5 或 N9C0.5A0.5 等,未来安全性继续提升将加速推进高镍三元渗透。

三元电池对镍需求高速增长

高镍化是三元电池发展的长期趋势

高镍电池能量密度高,装机电动车续航能力强。根据镍钴锰在三元材料正极材料中含量比例, 可以将三元电池分为高镍与低镍两类,高镍电池包含 NCM811 和 NCM622 等,低镍电池为 NCM523 和 NCM111,另外用铝代替锰的镍钴铝三元电池也属于高镍电池的一种。不同比 例 NCM 的正极材料的性能有所差异,Ni 元素具有较高的能量密度,能够提升正极的比容 量,但其安全性降低;Co 能够提升电池正极的稳定性,因此应用于 3C 的锂电池多采用钴 酸锂正极,但其价格相对较高;Mn 元素表现出较高的安全性,同时具有低成本的特点,但 在正极中使用比例上限较低。

三元电池高镍化更符合政策引导的长续航方向。《汽车产业中长期发展规划》中明确规划, 到 2020 年,动力电池单体能量密度达到 300Wh/kg 以上,力争实现 350Wh/kg。到 2025 年,动力电池系统能量密度达到 350Wh/kg。若要提高电池的能量密度,提升车辆续驶里 程,高镍化是三元电池必经之路。

三元电池高镍化将持续降低电池成本。由于补贴突破以及磷酸铁锂成本优势凸显,三元电池 的降成本重要性和必要性日益迫切。由于全球的钴资源集中于刚果(金),受供需关系以及 进口干扰较大,钴价格较高且波动性较大。镍储量丰富,冶炼技术工艺快速进步使价格维持 在相对合理水平。2021 年 12 月 13 日,硫酸钴、硫酸镍的价格分别为 9.7 万 元/吨、3.5 万元/吨,理论上生产 1 Gwh 的 NCM333、NCM523、 NCM622、NCM811 需 要的钴金属量分别为 367、220、200 和 91 吨,需要的镍金属量分别为 366、548、595 和 725 吨。按照市场中目前市占率最高的 NCM523 和市占率增长速度最快的 NCM811 举例, 生产同等能量密度的电池,NCM811 的生产成本比 NCM522 的生产成本低 13%。在成本推 动下,三元电池高镍化为必然趋势。

金属材料行业分析:金属新材料行业深度研究及投资策略(3)

中国新能源汽车对硫酸镍需求测算

2020 年中国新能源汽车产量 130.89 万辆,锂电装机量为 63.65Gwh,其中三元电池装机量 为 38.86Gwh,占比 61.05%。2021 年 1-8 月国内新能源汽车产量 180.69 万辆,动力电池 装机量 76.3Gwh,我们预计到 2025 年中国的新能源汽车产量将达到 1181 万辆,年复合增 速为 50%,2025 年的单车平均带电量为 55.46kwh/辆,则对应锂电装机总量为 653GWh。

三元电池能量密度及里程优势明显,未来综合成本下降空间较大,我们预计三元电池远期占 比虽较 2020 年超过 60%的占比有所下降,但仍将维持在 50%左右的市场份额。对于不同 类型的三元材料,我们预计 8 系电池占比将以 25%的增速增长, 5 系及以下电池占比将持 续下降,到 2025 年 NCM811 电池占比达 67.14%,NCM622 占比 14.22%,NCA 电池占比 1.28%。生产 1GwhNCM811、NCM622 三元电池理论需要硫酸镍的质量分别为 3245 吨、 2665 吨,到 2025 年国内新能源汽车高镍动力电池对硫酸镍的理论需求为 100.11 万吨;假 设整个产业链生产加工过程存有 20%左右的折损, 2025 年新能源汽车对硫酸镍的总需求 为 138 万吨,镍金属量的需求为 31 万吨。

海外新能源汽车对硫酸镍需求测算

海外高镍技术成熟度较高,高镍三元电池占比高。海外主要动力电池公司日本松下集团的产 品结构中,约 60%为 NCA 电池,包含供应特斯拉的 18650、21700 以及 4682 等型号的电 池,配合使用硅碳负极的电芯单体能量密度可超过 300Wh/kg。韩国 LG 化学在 2018 年实 现 NCM811 小批量供货,并实现小批量 NCA 量产,目前计划 2022 年正式量产 NCMA 电 池,供应特斯拉在中国生产的 Model Y 车型以及通用汽车的部分电动车。韩国三星 SDI 的 客户偏向高端车企,电池目前主要是 NCM111 和 NCM622 产品,2019 年大力发展 NCM811 电池,公司规划的电池发展路线为“NCM111-NCM622-NCM811-NCM811 提升-全固态电 池”。

RKEF 火法及 HPAL 湿法冶炼共同支撑硫酸镍产量增长

硫化镍通过火法制备纯镍、镍中间体(高冰镍、氢氧化钴镍),再制备成硫酸镍,处理过程 为将镍矿中的镍元素熔炼成高冰镍(火法)或浸出到溶液中(湿法),目前大部分厂商采用 火法提炼,例如国内甘肃金川公司将各种硫化镍矿采用火法冶金工艺炼成低冰镍,再将低冰 镍用转炉吹炼成高冰镍。高冰镍经镍精炼厂的不同精炼方法生产硫酸镍或纯镍。

金属材料行业分析:金属新材料行业深度研究及投资策略(4)

红土镍矿提镍目前主要有“RKEF 火法-镍铁(-高冰镍-硫酸镍)”和“湿法-镍钴中间品-硫酸 镍”两种方式,还有部分厂商采用小高炉法生产。RKEF 火法生产镍铁主要用于不锈钢,红 土镍矿为氧化镍矿,杂质含量高,无法采用硫化镍矿简单的火法冶炼;早期国内主要采用高 炉法冶炼成低镍铁。2010 年后青山集团将改进后的回转窑-电炉法(RKEF 法)应用于红土 镍矿冶炼高镍铁,大幅提升红土镍矿生产高镍铁的效率;且无须提纯成镍金属,大大降低不 锈钢中镍元素的获得成本。RKEF 火法冶炼适合处理高镍低铁低硅的镍矿,优点是适应性好、 回收率较高,缺点是能耗较大、污染相对严重。

红土镍矿可通过高冰镍和镍钴中间品制备生产成硫酸镍,满足三元电池的需求。目前硫酸镍主要原料有高冰镍、镍湿法中间产品、镍豆/镍粉、废镍等。硫酸镍备制路径可以分为下 几种:(1)硫化镍矿(火法)-高冰镍-硫酸镍、(2)红土镍矿(湿法)-中间品(如氢氧化镍 钴)-硫酸镍、(3)纯镍(如镍板、镍豆/镍粉)-硫酸镍晶体-硫酸镍、(4)RKEF 红土镍矿 -镍铁-高冰镍-硫酸镍及(5)废料-硫酸镍等。2020 年国内约 49%的硫酸镍来自高冰镍(硫 化矿)和湿法中间品(MHP)。

红土镍矿火法和湿法制备硫酸镍成本相差不大。 2020 年印尼青山 IMIP 基地从镍铁到高冰 镍再到硫酸镍的工艺流程走通,总成本约为 10000 美金/镍吨;2021 年中国企业在印尼的新 型湿法冶炼工艺走通,宁波力勤资源在 3.6 万吨/年湿法项目 2 季度投产,华友钴业下属华 越项目于 11 月投料试生产,两者成本也约在 9500-10000 美金/镍吨。红土镍矿火法和湿法 的成本均低于硫化镍的生产成本,根据金川公告,2019 年其硫化镍生产镍系列产品成本为 122872 元/镍吨,超过 1.8 万美元/镍吨。

金属材料行业分析:金属新材料行业深度研究及投资策略(5)

猜您喜欢: