四年级奥数等差等比数列公式大全(媛媛妈的奥数课三年级第6讲)
四年级奥数等差等比数列公式大全(媛媛妈的奥数课三年级第6讲)根据数列中项的个数分类,我们把项数有限的数列(即有有穷多个项的数列)称为有穷数列,把项数无限的数列(即有无穷多个项的数列)称为无穷数列,上面的几个例子中,(2)(3)是有穷数列,(1)是无穷数列。 数列中的每一个数都叫做这个数列的项,其中第1个数称为这个数列的第1项,第2个数称为第2项,…,第n个数就称为第n项。如数列(3)中,第1项是45,第2项也是45,第3项是44,第4项是46,第5项45。某年级各班的学生人数(按班级顺序一、二、三、四、五班排列)45,45,44,46,45 (3) 像上面的这些例子,按一定次序排列的一列数就叫做数列。
日常生活中,我们经常接触到许多按一定顺序排列的数。
如:
自然数:1,2,3,4,5,6,7,… (1)
年份:1990,1991,1992,1993,1994,1995,1996 (2)
某年级各班的学生人数(按班级顺序一、二、三、四、五班排列)
45,45,44,46,45 (3)
像上面的这些例子,按一定次序排列的一列数就叫做数列。
数列中的每一个数都叫做这个数列的项,其中第1个数称为这个数列的第1项,第2个数称为第2项,…,第n个数就称为第n项。如数列(3)中,第1项是45,第2项也是45,第3项是44,第4项是46,第5项45。
根据数列中项的个数分类,我们把项数有限的数列(即有有穷多个项的数列)称为有穷数列,把项数无限的数列(即有无穷多个项的数列)称为无穷数列,上面的几个例子中,(2)(3)是有穷数列,(1)是无穷数列。
研究数列的目的是为了发现其中的内在规律性,以作为解决问题的依据,本讲将从简单数列出发,来找出数列的规律。
不妨把①与②联系起来继续观察,容易看出:数列①中,随项数的增大,每一项的数值也相应增大,即数列①是递增的;数列②中,随项数的增大,每一项的值却依次减小,即数列②是递减的。但是除了上述的不同点之外,这两个数列却有一个共同的性质:即相邻两项的差都是一个定值。我们把类似①②这样的数列,称为等差数列。
综合③④考虑,数列③是递增的数列,数列④是递减的数列,但它们却有一个共同的特点:每列数中,相邻两项的商都相等。像③④这样的数列,我们把它称为等比数列。
这个以1,1分别为第1、第2项,以后各项都等于其前两项之和的无穷数列,就是数学上有名的斐波那契数列,它来源于一个有趣的问题:如果一对成熟的兔子一个月能生一对小兔,小兔一个月后就长成了大兔子,于是,下一个月也能生一对小兔子,这样下去,假定一切情况均理想的话,每一对兔子都是一公一母,兔子的数目将按一定的规律迅速增长,按顺序记录每个月中所有兔子的数目(以对为单位,一月记一次),就得到了一个数列,这个数列就是数列⑤的原型,因此,数列⑤又称为兔子数列,这些在高年级递推方法中我们还要作详细介绍。
数列⑥不同于数列⑤的原因是:数列⑥的第2项为3,而数列⑤为1,数列⑥称为鲁卡斯数列。
小结:寻找数列的规律,通常从两个方面来考虑:
①寻找各项与项数间的关系;②考虑相邻项之间的关系。然后,再归纳总结出一般的规律。
事实上,数列⑦或数列⑧的两种方法,就是分别从以上两个不同的角度来考虑问题的。但有时候,从两个角度的综合考虑会更有利于问题的解决。因此,仔细观察,认真思考,选择适当的方法,会使我们的学习更上一层楼。
像(13)(14)这样的数列,每个数列中都含有两个系列,这两个系列的规律各不相同,类似这样的数列,称为双系列数列或双重数列。
下面是给同学们的小练习,一起做做看吧!
感谢关注媛媛妈奥数课,下一讲将学习“填算式(一)”。更多内容请关注媛媛妈希望星精品托管辅导班微信公众号(xiwangSTAR)
本讲答案