快捷搜索:  汽车  科技

二次函数4知识点整理(二次函数讲义四)

二次函数4知识点整理(二次函数讲义四)求二次函数 y = ax2 bx c ( a ≠ 0 ) 的图象与 x 轴的交点坐标,就是令 y=0,求 x 的值的问题.① 二次函数图象与 x 轴的交点情况决定一元二次方程根的情况3.学会用函数的观点去看方程和用数形结合的思想去解决问题.【知识点梳理】1、二次函数与一元二次方程的关系

二次函数与一元二次方程

【学习目标】

1.会用图象法求一元二次方程的近似解;掌握二次函数与一元二次方程的关系;

2.会求抛物线与 x 轴交点的坐标,掌握二次函数与不等式之间的联系;

3.学会用函数的观点去看方程和用数形结合的思想去解决问题.

【知识点梳理】

1、二次函数与一元二次方程的关系

① 二次函数图象与 x 轴的交点情况决定一元二次方程根的情况

求二次函数 y = ax2 bx c ( a ≠ 0 ) 的图象与 x 轴的交点坐标,就是令 y=0,求 x 的值的问题.

此时二次函数就转化为一元二次方程,因此一元二次方程根的个数决定了抛物线与 x 轴的交点的个数,

它们的关系如下表:

二次函数4知识点整理(二次函数讲义四)(1)

注:

二次函数4知识点整理(二次函数讲义四)(2)

② 抛物线与直线的交点问题

抛物线与 x 轴的两个交点的问题实质就是抛物线与直线的交点问题.

我们把它延伸到求抛物线 y = ax2 bx c ( a ≠ 0 ) 与 y 轴交点和二次函数与一次函数的交点问题.

抛物线 y = ax2 bx c ( a ≠ 0 ) 与 y 轴的交点是 ( 0,c ).

抛物线 y = ax2 bx c ( a ≠ 0 ) 与一次函数 y = kx b1 ( k ≠ 0 ) 的交点个数由方程组

二次函数4知识点整理(二次函数讲义四)(3)

a. 当方程组有两组不同的解时 ↔ 两函数图象有两个交点;

b. 当方程组有两组相同的解时 ↔ 两函数图象只有一个交点;

c. 当方程组无解时 ↔ 两函数图象没有交点.

总之,探究直线与抛物线的交点的问题,最终是讨论方程 ( 组 ) 的解的问题.

注:

求两函数图象交点的问题主要运用转化思想,即将函数的交点问题转化为求方程组解的问题或者

将求方程组的解的问题转化为求抛物线与直线的交点问题.

2、抛物线与 x 轴的两个交点之间的距离公式

二次函数4知识点整理(二次函数讲义四)(4)

3、抛物线与不等式的关系

二次函数4知识点整理(二次函数讲义四)(5)

注:

抛物线 y = ax2 bx c 在 x 轴上方的部分点的纵坐标都为正,

所对应的 x 的所有值就是不等式 ax2 bx c > 0 的解集;

在 x 轴下方的部分点的纵坐标都为负,所对应的 x 的所有值就是不等式 ax2 bx c < 0 的解集.

不等式中如果带有等号,其解集也相应带有等号.

【典型例题】

类型一、二次函数图象与坐标轴交点

【例题1】

二次函数4知识点整理(二次函数讲义四)(6)

【答案与解析】

二次函数4知识点整理(二次函数讲义四)(7)

注:

根据抛物线与 x 轴的交点个数可确定字母系数的取值范围,其方法是根据抛物线与 x 轴的交点个数,

推出△ 值的性质,即列出关于字母系数的方程(或不等式),通过方程(或不等式)求解.

特别提醒:易忽视二次项系数 2(k 1) ≠ 0 这一隐含条件.

类型二、二次函数与一元二次方程的综合运用

【例题2】

二次函数4知识点整理(二次函数讲义四)(8)

【答案与解析】

二次函数4知识点整理(二次函数讲义四)(9)

二次函数4知识点整理(二次函数讲义四)(10)

二次函数4知识点整理(二次函数讲义四)(11)

二次函数4知识点整理(二次函数讲义四)(12)

二次函数4知识点整理(二次函数讲义四)(13)

注:

根据二次函数与一元二次方程的关系,将函数转化为一元二次方程,

再利用判别式,讨论二次函数的图象与 x 轴的交点个数,利用根与系数关系建立关于 m 的方程,

求出 m 值,得二次函数解析式,分别求出 C 点、M 点坐标,进而求出直线方程.

【例题3】如图,二次函数的图象与 x 轴交于A(﹣3,0)和 B(1,0)两点,

交 y 轴于点 C(0,3),点 C、D 是二次函数图象上的一对对称点,一次函数的图象过点 B、D.

(1)求二次函数的解析式;

(2)根据图象直接写出使一次函数值大于二次函数值的 x 的取值范围;

(3)若直线与 y 轴的交点为 E,连结 AD、AE,求 △ADE 的面积.

二次函数4知识点整理(二次函数讲义四)(14)

【答案与解析】

二次函数4知识点整理(二次函数讲义四)(15)

二次函数4知识点整理(二次函数讲义四)(16)

二次函数4知识点整理(二次函数讲义四)(17)

注:

此题主要考查了待定系数法求一次函数和二次函数解析式,利用数形结合得出是解题关键.


猜您喜欢: