快捷搜索:  汽车  科技

利用深度学习进行时间序列预测:利用深度学习进行时间序列预测

利用深度学习进行时间序列预测:利用深度学习进行时间序列预测但是,也可能有行星,系外行星,它们干扰恒星,甚至从恒星之间穿过卫星的视线(凌日方法[12])。这条通道遮住了恒星,卫星接收到的光子较少,因为它们被前面经过的行星挡住了(一个具体的例子是月球引起的日食)。如前文所述,这些数据对应于几颗恒星的通量测量值。实际上,在每一个时间增量(小时),卫星都会测量来自附近恒星的通量。这个通量,或者说是光强度,随时间而变化。这有几个原因,卫星的正确移动、旋转、视角等都会有所不同。因此,测量到的光子数会发生变化,恒星是一个熔化的物质球(氢和氦聚变),它有自己的运动,因此光子的发射取决于它的运动。这对应于光强度的波动。那么我们将在哪个模型上进行这项研究?我们将使用循环神经网络(RNN[5]),LSTM[6]、GRU[7]、Stacked LSTM、Stacked GRU、双向LSTM[8]、双向GRU以及CNN-LSTM[9]。对于那些热衷于树的人,你可以在这里找

利用深度学习进行时间序列预测:利用深度学习进行时间序列预测(1)

介绍

长期以来,我听说时间序列问题只能用统计方法(AR[1],AM[2],ARMA[3],ARIMA[4])。这些技术通常被数学家使用,他们试图不断改进这些技术来约束平稳和非平稳的时间序列。

几个月前,我的一个朋友(数学家、统计学教授、非平稳时间序列专家)提出让我研究如何验证和改进重建恒星光照曲线的技术。事实上,开普勒卫星[11]和其他许多卫星一样,无法连续测量附近恒星的光通量强度。开普勒卫星在2009年至2016年间致力于寻找太阳系外的行星,称为太阳系外行星或系外行星。

正如你们所理解的,我们将比我们的行星地球走得更远一点,并利用机器学习进入银河之旅。天体物理学一直是我的挚爱。

这个notebook可以在Github上找到:https://github.com/Christophe-pere/Time_series_RNN。

RNN,LSTM,GRU,双向,CNN-x

那么我们将在哪个模型上进行这项研究?我们将使用循环神经网络(RNN[5]),LSTM[6]、GRU[7]、Stacked LSTM、Stacked GRU、双向LSTM[8]、双向GRU以及CNN-LSTM[9]。

对于那些热衷于树的人,你可以在这里找到一篇关于XGBoost和时间序列的文章,作者是jasonbrownley。github上提供了一个关于时间序列的很好的存储库:https://github.com/Jenniferz28/Time-Series-ARIMA-XGBOOST-RNN

对于那些不熟悉RNN家族的人,把它们看作是具有记忆效应和遗忘能力的学习方法。双向来自体系结构,它是指两个RNN,它将在一个方向(从左到右)和另一个方向(从右到左)“读取”数据,以便能够最好地表示长期依赖关系。

数据

如前文所述,这些数据对应于几颗恒星的通量测量值。实际上,在每一个时间增量(小时),卫星都会测量来自附近恒星的通量。这个通量,或者说是光强度,随时间而变化。这有几个原因,卫星的正确移动、旋转、视角等都会有所不同。因此,测量到的光子数会发生变化,恒星是一个熔化的物质球(氢和氦聚变),它有自己的运动,因此光子的发射取决于它的运动。这对应于光强度的波动。

但是,也可能有行星,系外行星,它们干扰恒星,甚至从恒星之间穿过卫星的视线(凌日方法[12])。这条通道遮住了恒星,卫星接收到的光子较少,因为它们被前面经过的行星挡住了(一个具体的例子是月球引起的日食)。

通量测量的集合被称为光曲线。光曲线是什么样子的?以下是一些示例:

利用深度学习进行时间序列预测:利用深度学习进行时间序列预测(2)

利用深度学习进行时间序列预测:利用深度学习进行时间序列预测(3)

利用深度学习进行时间序列预测:利用深度学习进行时间序列预测(4)

不同恒星之间的通量非常不同。有的噪音很大,有的则很稳定。通量仍然呈现异常。在光照曲线中可以看到孔或缺少测量。我们的目标是看是否有可能在没有测量的情况下预测光曲线的行为。

数据缩减

为了能够使用模型中的数据,有必要进行数据简化。这里将介绍两种方法,移动平均法和窗口法。

移动平均线:

移动平均包括取X个连续点并计算它们的平均值。这种方法可以减少变异性,消除噪声。这也减少了点的数量,这是一种下采样方法。

下面的函数允许我们从点列表中计算移动平均值,方法计算点的平均值和标准差的数字。

def moving_mean(time flux lag=5): ''' 该函数通过设定平均值,使数据去噪,减少数据量。 @param time: (list) 时间值列表 @param flux: (list) 浮点列表->恒星通量 @param lag: (int) 平均值个数,默认值5 @return X: (list) 时间调整 @return y: (list) 通量按平均值重新标定 @return y_std: (list) 标准差列表 ''' # 让我们做一些简单的代码 # 空列表 X = [] y = [] y_std = [] j = 0 # 增量 for i in range(int(len(flux)/lag)): X.append(np.mean(time[(i j):(i j lag)])) y.append(np.mean(flux[(i j):(i j lag)])) y_std.append(np.std(flux[(i j):(i j lag)])) j = lag return X y y_stdn

可以看到函数在输入中接受3个参数。时间和通量是时间序列的x和y。lag 是控制计算时间和通量平均值以及通量标准差时所考虑的数据个数。

现在,我们可以看看如何使用这个函数以及通过转换得到的结果。

# #导入所需的包 matplotlib inline import scipy import pandas as pd import numpy as np import matplotlib.pyplot as plt import sklearn import tensorflow as tf # 让我们看看进度条 from tqdm import tqdm tqdm().pandas()

现在我们需要导入数据。文件kep_lightcurves.csv包含着数据。每颗恒星有4列,原始磁通量(“…orig”),重新缩放的通量是原始磁通量减去平均磁通量(“…rscl’”)、差值(“…diff”)和残差(“…_res”)。总共52列。

# 20个数据点 x y y_err = moving_mean(df.index df["001724719_rscl"] 20)

df.index表示时间序列的时间

df[" 001724719_rscl "] 重新缩放的通量(" 001724719 ")

lag=20是计算平均值和std的数据点的个数

前面3条光照曲线的结果:

利用深度学习进行时间序列预测:利用深度学习进行时间序列预测(5)

利用深度学习进行时间序列预测:利用深度学习进行时间序列预测(6)

利用深度学习进行时间序列预测:利用深度学习进行时间序列预测(7)

窗口方法

第二种方法是窗口方法,它是如何工作的?

你需要取很多点,在前一个例子中是20,然后计算平均值(与前面的方法没有区别),这个点是新时间序列的开始,它在位置20(偏移19个点)。但是,窗口不是移动到下20个点,而是移动一个点,用之前的20个点计算平均值,然后通过向后移动一步,以此类推。

这不是一种下采样方法,而是一种清理方法,因为其效果是平滑数据点。

让我们看看代码:

def mean_sliding_windows(time flux lag=5): ''' 该函数通过设定平均值,使数据去噪。 @param time: (list) 时间值列表 @param flux: (list) 浮点列表->恒星通量 @param lag: (int) 平均值个数,默认值5 @return X: (list) 时间调整 @return y: (list) 通量按平均值重新标定 @return y_std: (list) 标准差列表 ''' # 让我们做一些简单的代码 # 空列表 X = [] y = [] y_std = [] j = 0 # 增量 for i in range(int(len(flux)-lag)): _flux = flux[i:(i lag)] _time = time[i:(i lag)] X.append(np.mean(_time)) y.append(np.mean(_flux)) y_std.append(np.std(_flux)) j = 1 # 我们只移动一步 return X y y_std

你可以很容易地这样使用它:

# 使用20个点 x y y_err = mean_sliding_windows(df.index df["001724719_rscl"] 40)

df.index表示时间序列的时间

df[" 001724719_rscl "] 重新缩放的通量(" 001724719 ")

lag=40是计算平均值和std的数据点的个数

现在,看看结果:

利用深度学习进行时间序列预测:利用深度学习进行时间序列预测(8)

利用深度学习进行时间序列预测:利用深度学习进行时间序列预测(9)

利用深度学习进行时间序列预测:利用深度学习进行时间序列预测(10)

嗯,还不错。将lag设置为40允许“预测”或在小孔中扩展新的时间序列。但是,如果你仔细看,你会发现在红线的开始和结束部分有一个分歧。可以改进函数以避免这些伪影。

在接下来的研究中,我们将使用移动平均法获得的时间序列。

将x轴从值更改为日期:

如果需要日期,可以更改轴。开普勒任务开始于2009年3月7日,结束于2017年。Pandas有一个叫做pd.data_range()的函数。此函数允许你从不断递增的列表中创建日期。

df.index = pd.date_range(‘2009–03–07’ periods=len(df.index) freq=’h’)

这行代码将创建一个频率为小时的新索引。打印结果如下所示。

$ df.index DatetimeIndex(['2009-03-07 00:00:00' '2009-03-07 01:00:00' '2009-03-07 02:00:00' '2009-03-07 03:00:00' '2009-03-07 04:00:00' '2009-03-07 05:00:00' '2009-03-07 06:00:00' '2009-03-07 07:00:00' '2009-03-07 08:00:00' '2009-03-07 09:00:00' ... '2017-04-29 17:00:00' '2017-04-29 18:00:00' '2017-04-29 19:00:00' '2017-04-29 20:00:00' '2017-04-29 21:00:00' '2017-04-29 22:00:00' '2017-04-29 23:00:00' '2017-04-30 00:00:00' '2017-04-30 01:00:00' '2017-04-30 02:00:00'] dtype='datetime64[ns]' length=71427 freq='H')

现在,对于原始时间序列,你有了一个很好的时间刻度。

生成数据集

因此,既然已经创建了数据简化函数,我们可以将它们组合到另一个函数中(如下所示),该函数将考虑初始数据集和数据集中的恒星名称(这部分可以在函数中完成)。

def reduced_data(df stars): ''' Function to automatically reduced a dataset @param df: (pandas dataframe) 包含所有数据的dataframe @param stars: (list) 包含我们想要简化数据的每个恒星的名称的列表 @return df_mean: 包含由减少平均值的数据的dataframe @return df_slide: 包含通过滑动窗口方法减少的数据 ''' df_mean = pd.DataFrame() df_slide = pd.DataFrame() for i in tqdm(stars): x y y_std = moving_average(df.index df[i "_rscl"] lag=25) df_mean[i "_rscl_x"] = x df_mean[i "_rscl_y"] = y df_mean[i "_rscl_y_std"] = y_std x y y_std = mean_sliding_windows(df.index df[i "_rscl"] lag=40) df_slide[i "_rscl_x"]= x df_slide[i "_rscl_y"]= y df_slide[i "_rscl_y_std"]= y_std return df_mean df_slide

要生成新的数据帧,请执行以下操作:

stars = df.columns stars = list(set([i.split("_")[0] for i in stars])) print(f"The number of stars available is: {len(stars)}") > The number of stars available is: 13

我们有13颗恒星,有4种数据类型,对应52列。

df_mean df_slide = reduced_data(df stars)

很好,在这一点上,你有两个新的数据集,其中包含移动平均和窗口方法减少的数据。

方法

准备数据:

为了使用机器学习算法来预测时间序列,必须相应地准备数据。数据不能仅仅设置在(x,y)个数据点。数据必须采用序列[x1,x2,x3,…,xn]和预测值y的形式。

下面的函数演示如何设置数据集:

def create_dataset(values look_back=1): ''' 函数准备一列(x y)数据指向用于时间序列学习的数据 @param values: (list) 值列表 @param look_back: (int) x列表的值[x1 x2 x3,…默认值1 @return _x: x时间序列的值 @return _y: y时间序列的值 ''' # 空列表 _x _y = [] [] for i in range(len(values)-look_back-1): a = values[i:(i look_back)] _x.append(a) # 集合x _y.append(values[i look_back]) # 集合y return np.array(_x) np.array(_y)

开始之前有两件重要的事。

1.需要重新缩放数据

当数据在[0 1]范围内时,深度学习算法对时间序列的预测效果更好。为此,scikit learn提供了MinMaxScaler()函数。你可以配置feature_range参数,但默认值为(0,1)。并清除nan值的数据(如果不删除nan值,则损失函数将输出nan)。

# 缩放数据 num = 2 # 选择数据集中的第三颗星 values = df_model[stars[num] "_rscl_y"].values # 提取值 scaler = MinMaxScaler(feature_range=(0 1)) # 创建MinMaxScaler的实例 dataset = scaler.fit_transform(values[~np.isnan(values)].reshape(-1 1)) # 数据将清除nan值,重新缩放并改变形状

2.需要将数据转换为x list和y

现在,我们将使用create_values()函数为模型生成数据。但是,以前,我更喜欢通过以下方式保存原始数据:

df_model = df_mean.save()

# 分成训练和测试集sets train_size = int(len(dataset) * 0.8) # 生成80%的训练数据 train = dataset[:train_size] # 设置训练数据 test = dataset[train_size:] # 设置测试数据 #重塑为X=t和Y=t 1 look_back = 20 trainX trainY = create_dataset(train look_back) testX testY = create_dataset(test look_back) # 将输入重塑为[示例、时间点、特征] trainX = np.reshape(trainX (trainX.shape[0] trainX.shape[1] 1)) testX = np.reshape(testX (testX.shape[0] testX.shape[1] 1))

看看结果吧

trainX[0] > array([[0.7414906] [0.76628096] [0.79901113] [0.62779976] [0.64012722] [0.64934765] [0.68549234] [0.64054092] [0.68075644] [0.73782449] [0.68319294] [0.64330245] [0.61339268] [0.62758265] [0.61779702] [0.69994317] [0.64737128] [0.64122564] [0.62016833] [0.47867125]]) # x数据的第一个有20个值 trainY[0] > array([0.46174275]) # 对应的y值

度量

我们用什么指标来预测时间序列?我们可以使用平均绝对误差和均方误差。它们由函数给出:

def metrics_time_series(y_true y_pred): ''' 从sklearn.metrics计算MAE和MSE度量 @param y_true: (list) 真实值列表 @param y_pred: (list) 预测值列表 @return mae mse: (float) (float) mae和mse的度量值 ''' mae = round(mean_absolute_error(y_true y_pred) 2) mse = round(mean_squared_error(y_true y_pred) 2) print(f"The mean absolute error is: {mae}") print(f"The mean squared error is: {mse}") return mae mse

首先需要导入函数:

from sklearn.metrics import mean_absolute_error mean_squared_error

RNNs:

你可以用几行代码轻松地用Keras实现RNN家族。在这里你可以使用这个功能来配置你的RNN。你需要首先从Keras导入不同的模型,如:

# 导入一些包 import tensorflow as tf from keras.layers import SimpleRNN LSTM GRU Bidirectional Conv1D MaxPooling1D Dropout

现在,我们有从Keras导入的模型。下面的函数可以生成一个简单的模型(SimpleRNN,LSTM,GRU)。或者,两个模型(相同的)可以堆叠,或者用于双向或两个双向模型的堆栈中。你还可以添加带有MaxPooling1D和dropout的CNN部分(Conv1D)。

def time_series_deep_learning(x_train y_train x_test y_test model_dl=LSTM unit=4 look_back=20 cnn=False bidirection=False stacked=False): ''' 生成不同组合的RNN模型。可以是简单的、堆叠的或双向的。模型也可以与CNN部分一起使用。 x是(样本、时间步长、特征)的训练数据 @param x_train: (matrix) 训练数据,维度为 (samples time steps features) @param y_train: (list) 预测 @param x_test: (matrix) 测试数据,维度为 (samples time steps features) @param y_test: (list) 预测 @param model_dl: (model) RNN类型 @param unit: (int) RNN单元数量 @param look_back: (int) x列表中值的数量,配置RNN的形状 @param cnn: (bool) 添加cnn部分模型,默认为false @param bidirection: (bool) 为RNN添加双向模型,默认为false @param stacked: (bool) 堆叠的两层RNN模型,默认为假 @return train_predict: (list) x_train的预测值 @return train_y: (list) 真实y值 @return test_predict: (list) x_test的预测值 @return test_y: (list) 真实y值 @return (dataframe) 包含模型和度量的名称 ''' #配置提前停止的回调,以避免过拟合 es = tf.keras.callbacks.EarlyStopping( monitor='loss' patience=5 verbose=0 mode='auto' ) # 序列模型的实例 model = Sequential() if cnn: # 如果cnn部分是需要的 print("CNN") model.add(Conv1D(128 5 activation='relu')) model.add(MaxPooling1D(pool_size=4)) model.add(Dropout(0.2)) if not bidirection and not stacked: # 如果需要简单的模型 print("Simple Model") name = model_dl.__name__ model.add(model_dl(unit input_shape=(look_back 1))) elif not bidirection: # 测试是否需要双向模型 print("Stacked Model") name = "Stacked_" model_dl.__name__ model.add(model_dl(unit input_shape=(look_back 1) return_sequences=True)) model.add(model_dl(unit input_shape=(look_back 1))) elif not stacked: # 测试是否需要堆叠模型 print("Bidirectional Model") name = "Bi_" model_dl.__name__ model.add(Bidirectional(model_dl(unit input_shape=(look_back 1)))) else: # 测试是否需要双向和堆叠模型 print("Stacked Bidirectional Model") name = "Stacked_Bi_" model_dl.__name__ model.add(Bidirectional(model_dl(unit input_shape=(look_back 1) return_sequences=True))) model.add(Bidirectional(model_dl(unit input_shape=(look_back 1)))) if cnn: # 更新名称与cnn部分 name = "CNN_" name # 添加单层稠密层和激活函数线性来预测连续值 model.add(Dense(1)) model.compile(loss='mean_squared_error' optimizer='adam') # MSE loss可以被'mean_absolute_error'替代 model.fit(trainX trainY epochs=1000 batch_size=100 callbacks=[es] verbose=0) # 做出预测 train_predict = model.predict(x_train) test_predict = model.predict(x_test) # 反预测 train_predict = scaler.inverse_transform(train_predict) train_y = scaler.inverse_transform(y_train) test_predict = scaler.inverse_transform(test_predict) test_y = scaler.inverse_transform(y_test) # 计算度量 print("Train") mae_train mse_train = metrics_time_series( train_y train_predict) print("Test") mae_test mse_test = metrics_time_series( test_y test_predict) return train_predict train_y test_predict test_y pd.DataFrame([name mae_train mse_train mae_test mse_test] index=["Name" "mae_train" "mse_train" "mae_test" "mse_test"]).T

此函数计算训练部分和测试部分的度量,并以数据帧的形式返回结果。举五个例子。

LSTM

# 训练模型并计算度量 > x_train_predict_lstm y_train_lstm x_test_predict_lstm y_test_lstm res= time_series_deep_learning(train_x train_y test_x test_y model_dl=LSTM unit=12 look_back=20) # 画出预测的结果 > plotting_predictions(dataset look_back x_train_predict_lstm x_test_predict_lstm) # 将每个模型的指标保存在数据框df_results中 > df_results = df_results.append(res)

GRU

# 训练模型并计算度量 > x_train_predict_lstm y_train_lstm x_test_predict_lstm y_test_lstm res= time_series_deep_learning(train_x train_y test_x test_y model_dl=GRU unit=12 look_back=20)

堆叠LSTM:

# 训练模型并计算度量 > x_train_predict_lstm y_train_lstm x_test_predict_lstm y_test_lstm res= time_series_deep_learning(train_x train_y test_x test_y model_dl=LSTM unit=12 look_back=20 stacked=True)

双向LSTM:

# 训练模型并计算度量 > x_train_predict_lstm y_train_lstm x_test_predict_lstm y_test_lstm res= time_series_deep_learning(train_x train_y test_x test_y model_dl=LSTM unit=12 look_back=20 bidirection=True)

CNN-LSTM:

# 训练模型并计算度量 > x_train_predict_lstm y_train_lstm x_test_predict_lstm y_test_lstm res= time_series_deep_learning(train_x train_y test_x test_y model_dl=LSTM unit=12 look_back=20 cnn=True) 结果

考虑到这些数据,结果相当不错。我们可以看出,深度学习RNN可以很好地再现数据的准确性。下图显示了LSTM模型的预测结果。

表1:不同RNN模型的结果,显示了MAE和MSE指标

Name | MAE Train | MSE Train | MAE Test | MSE Test -------------------------------------------------------------------- GRU | 4.24 | 34.11 | 4.15 | 31.47 LSTM | 4.26 | 34.54 | 4.16 | 31.64 Stack_GRU | 4.19 | 33.89 | 4.17 | 32.01 SimpleRNN | 4.21 | 34.07 | 4.18 | 32.41 LSTM | 4.28 | 35.1 | 4.21 | 31.9 Bi_GRU | 4.21 | 34.34 | 4.22 | 32.54 Stack_Bi_LSTM | 4.45 | 36.83 | 4.24 | 32.22 Bi_LSTM | 4.31 | 35.37 | 4.27 | 32.4 Stack_SimpleRNN | 4.4 | 35.62 | 4.27 | 33.94 SimpleRNN | 4.44 | 35.94 | 4.31 | 34.37 Stack_LSTM | 4.51 | 36.78 | 4.4 | 34.28 Stacked_Bi_GRU | 4.56 | 37.32 | 4.45 | 35.34 CNN_LSTM | 5.01 | 45.85 | 4.55 | 36.29 CNN_GRU | 5.05 | 46.25 | 4.66 | 37.17 CNN_Stack_GRU | 5.07 | 45.92 | 4.7 | 38.64

表1显示了RNN系列训练集和测试集的平均绝对误差(MAE)和均方误差(MSE)。GRU在测试集上显示了最好的结果,MAE为4.15,MSE为31.47。

讨论

结果很好,并且重现了不同恒星的光照曲线(见notebook)。然而,波动并不是完全重现的,峰值的强度也不相同,通量也有轻微的偏移。可以通过注意机制进行校正。另一种方法是调整模型、层数(堆栈)、单元数(单元)、不同RNN算法的组合、新的损失函数或激活函数等。

结论

本文展示了将所谓的人工智能方法与时间序列相结合的可能性。记忆算法(RNN、LSTM、GRU)的强大功能使得精确再现事件的偶发波动成为可能。在我们的例子中,恒星通量表现出相当强烈和显著的波动,这些方法已经能够捕捉到。

这项研究表明,时间序列不再是统计方法,如ARIMA[4]模型。

猜您喜欢: