一元二次方程中根与系数怎么判定(一元二次方程中根与系数的关系之韦达定理)
一元二次方程中根与系数怎么判定(一元二次方程中根与系数的关系之韦达定理)(1)计算对称式的值(2)构造新方程(3)定性判断字母系数的取值范围
韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣,常利用业余时间钻研数学。韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。人们为了纪念他在代数学上的功绩,称他为“代数学之父”。
历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提出了一个45次的方程向各国数学家挑战。国王于是把这个问题交给韦达,韦达当即得出一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解)。消息传开,数学界为之震惊。同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。
韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间关系的韦达定理。
根系关系的三大用处
(1)计算对称式的值
(2)构造新方程
(3)定性判断字母系数的取值范围